Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 027202    DOI: 10.1088/0256-307X/38/2/027202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Suppressed Thermal Conductivity in Polycrystalline Gold Nanofilm: The Effect of Grain Boundary and Substrate
Lan Dong1†, Xiangshui Wu2, Yue Hu1, Xiangfan Xu2*, and Hua Bao1*
1University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
2Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, 200092 Shanghai 200092, China
Cite this article:   
Lan Dong, Xiangshui Wu, Yue Hu et al  2021 Chin. Phys. Lett. 38 027202
Download: PDF(953KB)   PDF(mobile)(940KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the electrical conductivity and thermal conductivity of polycrystalline gold nanofilms, with thicknesses ranging from 40.5 nm to 115.8 nm, and identify a thickness-dependent electrical conductivity, which can be explained via the Mayadas and Shatzkes (MS) theory. At the same time, a suppressed thermal conductivity is observed, as compared to that found in the bulk material, together with a weak thickness effect. We compare the thermal conductivity of suspended and supported gold films, finding that the supporting substrate can effectively suppress the in-plane thermal conductivity of the polycrystalline gold nanofilms. Our results indicate that grain boundary scattering and substrate scattering can affect electron and phonon transport in polycrystalline metallic systems.
Received: 06 October 2020      Published: 27 January 2021
PACS:  72.15.Cz (Electrical and thermal conduction in amorphous and liquid metals and Alloys ?)  
  72.15.-v (Electronic conduction in metals and alloys)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51676121 and 12004242).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/027202       OR      https://cpl.iphy.ac.cn/Y2021/V38/I2/027202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lan Dong
Xiangshui Wu
Yue Hu
Xiangfan Xu
and Hua Bao
[1] Waldrop M M 2016 Nature 530 144
[2] Franklin A D 2015 Science 349 aab2750
[3] Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q 2020 Adv. Funct. Mater. 30 1903873
[4] Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 2070048
[5] Hussein M I, Tsai C N and Honarvar H 2020 Adv. Funct. Mater. 30 1906718
[6] Avery A D, Mason S J, Bassett D, Wesenberg D and Zink B L 2015 Phys. Rev. B 92 214410
[7] Zhang X, Zhang Q, Cao B, Fujii M, Takahashi K and Ikuta T 2006 Chin. Phys. Lett. 23 936
[8] Zhang X, Xie H, Fujii M, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Appl. Phys. Lett. 86 171912
[9] Yao M, Zebarjadi M and Opeil C P 2017 J. Appl. Phys. 122 135111
[10] Ou M N, Yang T J, Harutyunyan S R, Chen Y Y, Chen C D and Lai S J 2008 Appl. Phys. Lett. 92 063101
[11] He G, Lu H, Dong X, Zhang Y, Liu J, Xie C and Zhao Z 2018 RSC Adv. 8 24893
[12] Feng B, Li Z and Zhang X 2009 Thin Solid Films 517 2803
[13] Wang H, Liu J, Zhang X and Takahashi K 2013 Int. J. Heat Mass Transfer 66 585
[14] Zhang Q, Cao B, Zhang X, Fujii M and Takahashi K 2006 J. Phys.: Condens. Matter 18 7937
[15] Wang H, Liu J, Zhang X, Guo Z and Takahashi K 2011 Heat Mass Transfer 47 893
[16] Zhang Q, Cao B, Zhang X, Fujii M and Takahashi K 2006 Phys. Rev. B 74 134109
[17] Sawtelle S D and Reed M A 2019 Phys. Rev. B 99 054304
[18] Ma W, Wang H, Zhang X and Wang W 2010 J. Appl. Phys. 108 064308
[19] Wang L, Saira O, Golubev D and Pekola J 2019 Phys. Rev. Appl. 12 024051
[20] Mason S J, Wesenberg D J, Hojem A, Manno M, Leighton C and Zink B L 2020 Phys. Rev. Mater. 4 065003
[21] Lin H, Xu S, Li C, Dong H and Wang X 2013 Nanoscale 5 4652
[22] Li X, Yan Y, Dong L, Guo J, Aiyiti A, Xu X, Li B 2017 J. Phys. D 50 104002
[23] Monshi A, Foroughi M R and Monshi M R 2012 World J. Nano Sci. Eng. 02 154
[24] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R, Thong J T, Hong B H, Loh K P, Donadio D and Li B O B 2014 Nat. Commun. 5 3689
[25] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A 2003 J. Heat Transfer 125 881
[26] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[27] Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q, Zhou J, Chen J, Xu X and Li B 2018 Nanoscale 10 2727
[28] Dong L, Xi Q, Chen D, Guo J, Nakayama T, Li Y, Liang Z, Zhou J, Xu X and Li B 2018 Natl. Sci. Rev. 5 500
[29] Aiyiti A, Bai X, Wu J, Xu X and Li B 2018 Sci. Bull. 63 452
[30] Wang Q, Liang X, Liu B, Song Y, Gao G and Xu X 2020 Nanoscale 12 1138
[31] Dong L, Xi Q, Zhou J, Xu X, Li B 2020 Phys. Rev. Appl. 13 034019
[32] Dong L, Xu X and Li B 2018 Appl. Phys. Lett. 112 221904
[33] Zheng P and Gall D 2017 J. Appl. Phys. 122 135301
[34] Mayadas A F and Shatzkes M 1970 Phys. Rev. B 1 1382
[35] Tong Z, Li S, Ruan X and Bao H 2019 Phys. Rev. B 100 144306
[36] Li S, Tong Z, Zhang X and Bao H 2020 Phys. Rev. B 102 174306
[37] Ma W and Zhang X 2013 Int. J. Heat Mass Transfer 58 639
[38] Stojanovic N, Maithripala D H S, Berg J M and Holtz M 2010 Phys. Rev. B 82 075418
[39] Van Attekum P M T M, Woerlee P H, Verkade G C and Hoeben A A M 1984 Phys. Rev. B 29 645
[40] Schneider M A, Wenderoth M, Heinrich A J, Rosentreter M A and Ulbrich R G 1996 Appl. Phys. Lett. 69 1327
[41] Zhao Y, Fitzgerald M L, Tao Y, Pan Z, Sauti G, Xu D, Xu Y Q and Li D 2020 Nano Lett. 20 7389
[42] Cheng Z, Liu L, Xu S, Lu M and Wang X 2015 Sci. Rep. 5 10718
[43] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213
[44] Jang W, Chen Z, Bao W, Lau C N and Dames C 2010 Nano Lett. 10 3909
Viewed
Full text


Abstract