CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Suppressed Thermal Conductivity in Polycrystalline Gold Nanofilm: The Effect of Grain Boundary and Substrate |
Lan Dong1†, Xiangshui Wu2, Yue Hu1, Xiangfan Xu2*, and Hua Bao1* |
1University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China 2Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, 200092 Shanghai 200092, China
|
|
Cite this article: |
Lan Dong, Xiangshui Wu, Yue Hu et al 2021 Chin. Phys. Lett. 38 027202 |
|
|
Abstract We investigate the electrical conductivity and thermal conductivity of polycrystalline gold nanofilms, with thicknesses ranging from 40.5 nm to 115.8 nm, and identify a thickness-dependent electrical conductivity, which can be explained via the Mayadas and Shatzkes (MS) theory. At the same time, a suppressed thermal conductivity is observed, as compared to that found in the bulk material, together with a weak thickness effect. We compare the thermal conductivity of suspended and supported gold films, finding that the supporting substrate can effectively suppress the in-plane thermal conductivity of the polycrystalline gold nanofilms. Our results indicate that grain boundary scattering and substrate scattering can affect electron and phonon transport in polycrystalline metallic systems.
|
|
Received: 06 October 2020
Published: 27 January 2021
|
|
PACS: |
72.15.Cz
|
(Electrical and thermal conduction in amorphous and liquid metals and Alloys ?)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51676121 and 12004242). |
|
|
[1] | Waldrop M M 2016 Nature 530 144 |
[2] | Franklin A D 2015 Science 349 aab2750 |
[3] | Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q 2020 Adv. Funct. Mater. 30 1903873 |
[4] | Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 2070048 |
[5] | Hussein M I, Tsai C N and Honarvar H 2020 Adv. Funct. Mater. 30 1906718 |
[6] | Avery A D, Mason S J, Bassett D, Wesenberg D and Zink B L 2015 Phys. Rev. B 92 214410 |
[7] | Zhang X, Zhang Q, Cao B, Fujii M, Takahashi K and Ikuta T 2006 Chin. Phys. Lett. 23 936 |
[8] | Zhang X, Xie H, Fujii M, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Appl. Phys. Lett. 86 171912 |
[9] | Yao M, Zebarjadi M and Opeil C P 2017 J. Appl. Phys. 122 135111 |
[10] | Ou M N, Yang T J, Harutyunyan S R, Chen Y Y, Chen C D and Lai S J 2008 Appl. Phys. Lett. 92 063101 |
[11] | He G, Lu H, Dong X, Zhang Y, Liu J, Xie C and Zhao Z 2018 RSC Adv. 8 24893 |
[12] | Feng B, Li Z and Zhang X 2009 Thin Solid Films 517 2803 |
[13] | Wang H, Liu J, Zhang X and Takahashi K 2013 Int. J. Heat Mass Transfer 66 585 |
[14] | Zhang Q, Cao B, Zhang X, Fujii M and Takahashi K 2006 J. Phys.: Condens. Matter 18 7937 |
[15] | Wang H, Liu J, Zhang X, Guo Z and Takahashi K 2011 Heat Mass Transfer 47 893 |
[16] | Zhang Q, Cao B, Zhang X, Fujii M and Takahashi K 2006 Phys. Rev. B 74 134109 |
[17] | Sawtelle S D and Reed M A 2019 Phys. Rev. B 99 054304 |
[18] | Ma W, Wang H, Zhang X and Wang W 2010 J. Appl. Phys. 108 064308 |
[19] | Wang L, Saira O, Golubev D and Pekola J 2019 Phys. Rev. Appl. 12 024051 |
[20] | Mason S J, Wesenberg D J, Hojem A, Manno M, Leighton C and Zink B L 2020 Phys. Rev. Mater. 4 065003 |
[21] | Lin H, Xu S, Li C, Dong H and Wang X 2013 Nanoscale 5 4652 |
[22] | Li X, Yan Y, Dong L, Guo J, Aiyiti A, Xu X, Li B 2017 J. Phys. D 50 104002 |
[23] | Monshi A, Foroughi M R and Monshi M R 2012 World J. Nano Sci. Eng. 02 154 |
[24] | Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R, Thong J T, Hong B H, Loh K P, Donadio D and Li B O B 2014 Nat. Commun. 5 3689 |
[25] | Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A 2003 J. Heat Transfer 125 881 |
[26] | Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502 |
[27] | Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q, Zhou J, Chen J, Xu X and Li B 2018 Nanoscale 10 2727 |
[28] | Dong L, Xi Q, Chen D, Guo J, Nakayama T, Li Y, Liang Z, Zhou J, Xu X and Li B 2018 Natl. Sci. Rev. 5 500 |
[29] | Aiyiti A, Bai X, Wu J, Xu X and Li B 2018 Sci. Bull. 63 452 |
[30] | Wang Q, Liang X, Liu B, Song Y, Gao G and Xu X 2020 Nanoscale 12 1138 |
[31] | Dong L, Xi Q, Zhou J, Xu X, Li B 2020 Phys. Rev. Appl. 13 034019 |
[32] | Dong L, Xu X and Li B 2018 Appl. Phys. Lett. 112 221904 |
[33] | Zheng P and Gall D 2017 J. Appl. Phys. 122 135301 |
[34] | Mayadas A F and Shatzkes M 1970 Phys. Rev. B 1 1382 |
[35] | Tong Z, Li S, Ruan X and Bao H 2019 Phys. Rev. B 100 144306 |
[36] | Li S, Tong Z, Zhang X and Bao H 2020 Phys. Rev. B 102 174306 |
[37] | Ma W and Zhang X 2013 Int. J. Heat Mass Transfer 58 639 |
[38] | Stojanovic N, Maithripala D H S, Berg J M and Holtz M 2010 Phys. Rev. B 82 075418 |
[39] | Van Attekum P M T M, Woerlee P H, Verkade G C and Hoeben A A M 1984 Phys. Rev. B 29 645 |
[40] | Schneider M A, Wenderoth M, Heinrich A J, Rosentreter M A and Ulbrich R G 1996 Appl. Phys. Lett. 69 1327 |
[41] | Zhao Y, Fitzgerald M L, Tao Y, Pan Z, Sauti G, Xu D, Xu Y Q and Li D 2020 Nano Lett. 20 7389 |
[42] | Cheng Z, Liu L, Xu S, Lu M and Wang X 2015 Sci. Rep. 5 10718 |
[43] | Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213 |
[44] | Jang W, Chen Z, Bao W, Lau C N and Dames C 2010 Nano Lett. 10 3909 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|