Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1392-1395    DOI:
Original Articles |
Thermal Conductivity of Carbon Nanotubes Embedded in Solids
CAO Bing-Yang;HOU Quan-Wen
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
CAO Bing-Yang, HOU Quan-Wen 2008 Chin. Phys. Lett. 25 1392-1395
Download: PDF(1124KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A carbon-nanotube-atom fixed and activated scheme of non-equilibrium molecular dynamics simulations is put forward to extract the thermal conductivity of carbon nanotubes (CNTs) embedded in solid argon. Though a 6.5% volume fraction of CNTs increases the composite thermal conductivity to about twice as much as that of the pure basal material, the thermal conductivity of NTs embedded in solids is found to be decreased by 1/8--1/5 with reference to that of pure ones. The decrease of the intrinsic thermal
conductivity of the solid-embedded CNTs and the thermal interface resistance are demonstrated to be responsible for the results.
Keywords: 65.80.+n      61.46.Fg      68.90.+g     
Received: 24 December 2007      Published: 31 March 2008
PACS:  65.80.+n  
  61.46.Fg (Nanotubes)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01392
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Bing-Yang
HOU Quan-Wen
[1] Shenogin S, Xue L P, Szisik R, Keblinski P and Cahill D G2004 J. Appl. Phys. 95 8136
[2]Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys.Rev. Lett. 87 215502
[3]Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K, Ikuta T, AbeH and Shimizu T 2005 Phys. Rev. Lett. 95 065502
[4]Yu C, Shi L, Yao Z, Li D and Majumdar A 2005 NanoLett. 5 1842
[5]Pop E, Mann D, Wang Q, Goodson K and Dai H 2006 NanoLett. 6 96
[6]Wang Z L et al 2007 Appl. Phys. Lett. 91 123119
[7]Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev.Lett. 84 4613
[8]Osman M A and Srivastava D 2001 Nanotechnology 12 21
[9]Maruyama S 2002 Physica B 323 193
[10]Yao Z H, Wang J S, Li B W and Liu G R 2005 Phys.Rev. B 71 085417
[11]Pan R Q, Xu Z J and Zhu Z Y 2007 Chin. Phys. Lett. 24 1321
[12]Choi S U S, Zhang Z G, Yu W, Lockwood F E and Grulke E A2001 Appl. Phys. Lett. 79 2252
[13]Biercuk M J et al 2002 Appl. Phys. Lett. 802767
[14]Kim Y A et al 2007 Appl. Phys. Lett. 90 093125
[15]Huxtable S T et al 2003 Nature Mater. 2 731
[16]Nan C W, Liu G, Lin Y and Li M 2004 Appl. Phys.Lett. 85 3549
[17]Chen T Y, Wen G and Liu W C 2005 J. Appl. Phys. 97 104312
[18]Deng F, Zheng Q S, Wang L F and Nan C W 2007 Appl.Phys. Lett. 90 021914
[19]Tersoff J 1988 Phys. Rev. Lett. 61 2879
[20]Brenner D W 1990 Phys. Rev. B 42 9458
[21]Tuzun R E, Noid D W, Sumpter B G and Merkle R C 1996 Nanotechnology 7 241
[22]Allen M P and Tildesley D J 1989 Computer Simulationof Liquids (New York: Oxford University Press)
[23]Che J, Cagin T and Goddard III W A 2000 Nanotechnology 11 65
[24]Padgett C W and Brenner C W 2004 Nano Lett. 41051
Related articles from Frontiers Journals
[1] LI Yong, ZHENG Li-Ping, ZHANG Wei**, XU Zi-Jian**, REN Cui-Lan, HUAI Ping, ZHU Zhi-Yuan . Charge and Mass Effects on Low Energy Ion Channeling in Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 1392-1395
[2] ZHANG Fu-Chun**, ZHANG Wei-Hu, DONG Jun-Tang, ZHANG Zhi-Yong . First-Principles Study of Fe-Doped ZnO Nanowires[J]. Chin. Phys. Lett., 2011, 28(12): 1392-1395
[3] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 1392-1395
[4] YIN Bing, DONG Shun-Le. Molecular Dynamical Simulation of Water/Ice Phase Transitions within Carbon Nanotubes under Various Pressures[J]. Chin. Phys. Lett., 2009, 26(8): 1392-1395
[5] ZHOU Li-Jun, GUO Jian-Gang, ZHAO Ya-Pu. Size- and Temperature-Dependent Thermal Expansion Coefficient of a Nanofilm[J]. Chin. Phys. Lett., 2009, 26(6): 1392-1395
[6] ZHANG Jing-Xiang, LI Hui, ZHANG Xue-Qing, LIEW Kim-Meow. Electric Conductivity of Phosphorus Nanowires[J]. Chin. Phys. Lett., 2009, 26(5): 1392-1395
[7] XU Mei-Hua, QI Xiao-Si, ZHONG Wei, YE Xiao-Juan, DENG Yu, AUChaktong, JIN Chang-Qing, YANG Zai-Xing, DU You-Wei. Synthesis and Properties of Magnetic Composites of Carbon Nanotubes/Fe Nanoparticle[J]. Chin. Phys. Lett., 2009, 26(11): 1392-1395
[8] ZHANG Fu-Chun, , ZHANG Zhi-Yong, ZHANG Wei-Hu, , YAN Jun-Feng, YUN Jiang-Ni. First-Principles Study on Magnetic Properties of V-Doped ZnO Nanotubes[J]. Chin. Phys. Lett., 2009, 26(1): 1392-1395
[9] PENG Bei, Horacio D. Espinosa. This paper has been withdrawn by the first author due to misconduct, see Chin. Phys. Lett. 26, 079901, 2009
In Situ Tests of Multiwalled Carbon Nanotubes with Strength Close to Theoretical Predictions
[J]. Chin. Phys. Lett., 2009, 26(1): 1392-1395
[10] HUANG Xiao-Peng, HUAI Xiu-Lan. Molecular Dynamics Simulation of Thermal Conductivity in Si--Ge Nanocomposites[J]. Chin. Phys. Lett., 2008, 25(8): 1392-1395
[11] CHEN Yu-Li, LIU Bin, YIN Ya-Jun, HUANG Yong-Gang, HWUANG Keh-Chih. Nonlinear Deformation Processes and Damage Modes of Super Carbon Nanotubes with Armchair-Armchair Topology[J]. Chin. Phys. Lett., 2008, 25(7): 1392-1395
[12] YUAN Peng-Fei, DING Ze-Jun, JU Xin. Theoretical Study on Structural and Elastic Properties of ZnO Nanotubes[J]. Chin. Phys. Lett., 2008, 25(3): 1392-1395
[13] S. Eren San, Mustafa Okutan, Oguz Koysal, Yusuf Yerli. Carbon Nanoparticles in Nematic Liquid Crystals[J]. Chin. Phys. Lett., 2008, 25(1): 1392-1395
[14] B. .I. GULIYEV, R. F. EMINBEYLI, A. KORKUT. Effect of Quantizing Magnetic Field on Cyclotron Energy and Cyclotron Effective Mass in Size Quantized Films with Non-Parabolic Energy Band[J]. Chin. Phys. Lett., 2007, 24(9): 1392-1395
[15] GE Yong, DONG Jin-Ming. Heat Conductivity of One-Dimensional Carbon Chain in an External Potential[J]. Chin. Phys. Lett., 2007, 24(9): 1392-1395
Viewed
Full text


Abstract