Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1365-1367    DOI:
Original Articles |
Influence of Initial Pulse Chirp on Rainbow-Like Supercontinuum Generation from Filamentation in Air

HAO Zuo-Qiang1,2;ZHANG Jie1,3,ZHANG Zhe1;LU Xin1;JIN Zhan1;ZHONG
Jia-Yong1;LIU Yun-Quan1;WANG Zhao-Hua1

1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics, Chinese Academy of Sciences, Beijing 1000802Laboratoire de Spectrometrie Ionique et Moleculaire, UMR CNRS 5579, Universite Claude Bernard Lyon 1, 43, Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France3Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
HAO Zuo-Qiang, ZHANG Jie, ZHANG Zhe et al  2008 Chin. Phys. Lett. 25 1365-1367
Download: PDF(686KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Supercontinuum (SC) generation from laser filamentation in air is found
to depend strongly on the pulse duration. Rainbow-like SC generation is
observed only for a pulse of appropriate negative chirp that agrees
with the predictions put forward by Golubtsov it et al. [it Quantum Electron. 33 (2003) 525]. The conversion efficiency of an 800-nm laser light to rainbow-like SC is found to be the highest for 257fs pulses with an initial negative chirp. A larger chirp will lead to filamentation surviving at longer distance.
Keywords: 52.38.Hb      42.65.Jx      42.65.Ky     
Received: 03 September 2007      Published: 31 March 2008
PACS:  52.38.Hb (Self-focussing, channeling, and filamentation in plasmas)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01365
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAO Zuo-Qiang
ZHANG Jie
ZHANG Zhe
LU Xin
JIN Zhan
ZHONGJia-Yong
LIU Yun-Quan
WANG Zhao-Hua
[1]Braun A, Korn G, Liu X, Du D, Squier J and Mourou G 1995 Opt.Lett. 20 73
[2] Xi T T, Lu X and Zhang J 2006 Phys. Rev. Lett. 96025003
[3] W\"oste L, Wedekind C, Wille H, Rairoux P, Stein B, Nikolov S,Werner C, Niedermeier S, Ronneberger F, Schillinger H and Sauerbrey R 1997 Las. Optoelektron. 29 51
[4] Tzortzakis S, Franco M A, Andr\'e Y B, Chiron A, Lamouroux B,Prade B S and Mysyrowicz A 1999 Phys. Rev. E 60 3505
[5] Zhang Z, Zhang J, Li Y T, Hao Z Q, Zheng Z Y, Yuan X H and Wang Z H2007 Acta Phys. Sin. 55 357 (in Chinese)
[6] Liu J S, Schroeder H, Chin S L, Li R X and Xu Z Z, 2005 Appl.Phys. Lett. 87 161105
[7] Kasparian J, Sauerbrey R, Mondelain D, Niedermeier S, Yu J, Wolf JP, Andr\'e Y B, Franco M, Prade B, Tzortzakis S, Mysyrowicz A, RodriguezM, Wille H and W\"oste L 2000 Opt. Lett. 25 1397
[8] Hao Z Q, Zhang J, Zhang Z, Yuan X H, Zheng Z Y, Lu X, Jin Z, Wang ZH, Zhong J Y and Liu Y Q 2006 Phys. Rev. E 74 066402
[9] Kasparian J, Rodriguez M, M\'ejean G, Yu J, Salmon E, Wille H,Bourayou R, Frey S, Andr\'e Y B, Mysyrowicz A, Sauerbrey R, Wolf J P andW\"oste L 2003 Science 301 61
[10] Hao Z Q, Zhang J, Lu X, Xi T T, Li Y T, Yuan X H, Zheng Z Y, WangZ H, Ling W J and Wei Z Y 2006 Opt. Express 14 773
[11] M\'echain G, Amico C D, Andr\'e Y B, Tzortzakis S, Franco M,Prade B, Mysyrowicz A, Couairon A, Salmon E and Sauerbrey R 2005 Opt.Comm. 247 171
[12] Esarey E, Sprangle P, Krall J and Ting A 1997 IEEE J.Quantum Electron. 33 1879
[13] Fontaine B La, Vidal F, Jiang Z, Chien C Y, Comtois D, DesparoisA, Johnston T W, Kieffer J C, P\'epin H and Mercure H P 1999 Phys.Plasmas 6 1615
[14] Yang H, Zhang J, Li Y J, Zhang J, Li Y T, Chen Z L, Teng H, Wei ZY and Sheng Z M 2002 Phys. Rev. E 66 016406
[15] Golubtsov I S, Kandidov V P and Kosareva O G 2003 QuantumElectron. 33 525
[16] Kandidov V P, Golubtsov I S and Kosareva O G 2004 QuantumElectron. 34 348
[17] Wang Z H, Hao Z Q, Zhang Z, Lu X, Jin Z, Zhong J Y, Liu Y Q, Wei ZY, Zhang J and Zhao G 2007 Acta Phys. Sin. 56 1434 (inChinese)
[18] Wille H, Rodriguez M, Kasparian J, Mondelain D, Yu J, MysyrowiczA, Sauerbrey R, Wolf J P and W\"oste L 2002 Eur. Phys. J. A 20 183
[19] Stelmaszczyk K, Rohwetter P, M\'ejean G, Yu J, Salmon E, KasparianJ, Ackermann R, Wolf J P and W\"oste L 2004 Appl. Phys. Lett. 85 3977
[20] Nuter R, Skupin S and Berg\'e L 2005 Opt. Lett. 30 917
[21] Alexeev I, Ting A and Gordon D F 2004 Appl. Phys. Lett. 84 4080
[22] Jin Z, Zhang J, Xu M H, Lu X, Li Y T, Wang Z H, Wei Z Y, Yuan X Hand Yu W 2005 Opt. Express 13 10424
Related articles from Frontiers Journals
[1] ZHANG Feng-Feng, YANG Feng, ZHANG Shen-Jin, WANG Zhi-Min, XU Feng-Liang, PENG Qin-Jun, ZHANG Jing-Yuan, WANG Xiao-Yang, CHEN Chuang-Tian, XU Zu-Yan. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(6): 1365-1367
[2] WANG Li-Rong, WANG Gui-Ling, ZHANG Xin, LIU Li-Juan, WANG Xiao-Yang, ZHU Yong, CHEN Chuang-Tian. Generation of Ultraviolet Radiation at 266 nm with RbBe2BO3F2 Crystal[J]. Chin. Phys. Lett., 2012, 29(6): 1365-1367
[3] CHEN Zhi-Yu, YAN Lian-Shan**, YI An-Lin, PAN Wei, LUO Bin . Simultaneous PMD Mitigation for Two Polarization Tributaries of a PDM Signal using only One All-Optical Regenerator[J]. Chin. Phys. Lett., 2011, 28(9): 1365-1367
[4] LI Xiao**, XIAO Hu, DONG Xiao-Lin, MA Yan-Xing, XU Xiao-Jun** . Coherent Beam Combining of Two Slab Laser Amplifiers and Second-Harmonic Phase Locking Based on a Multi-Dithering Technique[J]. Chin. Phys. Lett., 2011, 28(9): 1365-1367
[5] LI Ping-Xue**<\sup>, , ZHANG Xue-Xia, LIU Zhi, CHI Jun-Jie . Large-Mode-Area Double-Cladding Photonic Crystal Fiber Laser in the Watt Range at 980nm[J]. Chin. Phys. Lett., 2011, 28(8): 1365-1367
[6] YANG Zhen-Jun, MA Xue-Kai, ZHENG Yi-Zhou, GAO Xing-Hui, LU Da-Quan, HU Wei** . Dipole Solitons in Nonlinear Media with an Exponential-Decay Nonlocal Response[J]. Chin. Phys. Lett., 2011, 28(7): 1365-1367
[7] RAO Zhi-Ming, WANG Xin-Bing**, LU Yan-Zhao, ZUO Du-Luo, WU Tao . Two Schemes for Generating Efficient Terahertz Waves in Nonlinear Optical Crystals with a Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(7): 1365-1367
[8] MA Dong-Li, REN Ming-Liang, LI Zhi-Yuan** . Broadband Response of Second Harmonic Generation in a Two-Dimensional Quasi-Random Quasi-Phase-Matching Structure[J]. Chin. Phys. Lett., 2011, 28(7): 1365-1367
[9] WEN Jing, JIANG Hong-Bing**, YU Jing, YANG Hong, GONG Qi-Huang** . Broadband Asymmetric Conical Emission via Cascaded Second-Order Nonlinear Polarization during the Propagation of Femtosecond Laser Pulses in a BBO Crystal[J]. Chin. Phys. Lett., 2011, 28(6): 1365-1367
[10] ZHU Hai-Yong**, ZHANG Ge, DUAN Yan-Min, HUANG Cheng-Hui, WEI Yong . Compact Continuous-Wave Nd:YVO4 Laser with Self-Raman Conversion and Sum Frequency Generation[J]. Chin. Phys. Lett., 2011, 28(5): 1365-1367
[11] FU Yu-Xin, ZHAO Jin-Yan, SONG Yue, DAI Guo-Xian, HUO Shu-Li, ZHANG Yan-Peng** . Polarized Spatial Splitting of Four-Wave Mixing Signal in Multi-Level Atomic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 1365-1367
[12] CHEN Ying, QIAN Lie-Jia**, ZHU He-Yuan, FAN Dian-Yuan . Suppression of FM-to-AM Conversion in Broadband Third-Harmonic Generation of Nd:Glass Laser[J]. Chin. Phys. Lett., 2011, 28(4): 1365-1367
[13] LU Yan-Zhao, WANG Xin-Bing**, MIAO Liang, ZUO Du-Luo, CHENG Zu-Hai . Terahertz Generation in Nonlinear Crystals with Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(3): 1365-1367
[14] SONG Yue, HUO Shu-Li, LI Pei-Ying, SANG Su-Ling, WANG Zhi-Guo**, ZHANG Yan-Peng** . Interplay of Coexisting Odd-Order Wave Mixings in a Five-Level Atomic System[J]. Chin. Phys. Lett., 2011, 28(2): 1365-1367
[15] LI Feng-Qin**, SHI Zhu, LI Yong-Min, PENG Kun-Chi . Tunable Single-Frequency Intracavity Frequency-Doubled Ti:Sapphire Laser around 461 nm[J]. Chin. Phys. Lett., 2011, 28(12): 1365-1367
Viewed
Full text


Abstract