Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4388-4390    DOI:
Original Articles |
Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure
WANG Yi1, WANG Bing1, ZHOU Zhi-Ping 2,3
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 4300742State Key Laboratory on Advanced Optical Communication Systems and Networks, Peking University, Beijing 1008713School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Cite this article:   
WANG Yi, WANG Bing, ZHOU Zhi-Ping 2008 Chin. Phys. Lett. 25 4388-4390
Download: PDF(320KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis. The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal--dielectric-dielectric-metal structures. The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector. The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers. The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.
Keywords: 73.20.Mf      73.40.Sx     
Received: 12 September 2008      Published: 27 November 2008
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.40.Sx (Metal-semiconductor-metal structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04388
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yi
WANG Bing
ZHOU Zhi-Ping
[1] Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
[2] Heidel T D, Mapel J K, Singh M, Celebi K and Baldo M A2007 Appl. Phys. Lett. 91 093506
[3] Hagglund C, Zach M, Petersson G and Kasemo B 2008 Appl. Phys. Lett. 92 053110
[4] Kalkman J, Strohhofer C, Gralak B and Polman A 2003 Appl. Phys. Lett. 83 30
[5] Wang Y and Zhou Z P 2006 Appl. Phys. Lett. 89253122
[6] Wang Y and Zhou Z P 2007 Appl. Phys. Lett. 91053504
[7] Levy R and Ruschin S 2007 Opt. Express. 1513649
[8] Shin H, Yanik M F, Fan S H, Zia R and Brongersma M L 2004 Appl. Phys. Lett. 84 4421
[9] Liu J S Q and Brongersma M L 2007 Appl. Phys. Lett. 90 091116
[10] Hasegawa K, Rohde C and Deutsch M 2006 Opt. Lett. 31 1136
[11] Hosseini A and Massoud Y 2006 J. Opt. Soc. Am. A 24 221
[12] Palik E 1991 Handbook of Optical Constants ofSolids (New York: Academic) p 235
[13] Okamoto T, Simonen J and Kawata S 2008 Phys. Rev. B 77 115425
[14] Wood G W and Kik P G 2008 Appl. Phys. Lett. 92 133101
Related articles from Frontiers Journals
[1] KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator[J]. Chin. Phys. Lett., 2012, 29(6): 4388-4390
[2] HU Shi-Jie,DU Wei,ZHANG Gui-Ping,GAO Miao,LU Zhong-Yi,WANG Xiao-Qun**. Exact Results for Intrinsic Electronic Transport in Graphene[J]. Chin. Phys. Lett., 2012, 29(5): 4388-4390
[3] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 4388-4390
[4] WANG Peng, WANG Rong-Yao**, JIN Jing-Yang, XU Le, SHI Qing-Fan**. The Morphological Change of Silver Nanoparticles in Water[J]. Chin. Phys. Lett., 2012, 29(1): 4388-4390
[5] CHEN Cong, NING Ting-Yin, WANG Can**, ZHOU Yue-Liang, ZHANG Dong-Xiang, WANG Pei, MING Hai, YANG Guo-Zhen . Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu 3Ti4O12 and Pt[J]. Chin. Phys. Lett., 2011, 28(8): 4388-4390
[6] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 4388-4390
[7] LI Ming-Zhu, AN Zheng-Hua**, ZHOU Lei, MAO Fei-Long, WANG Heng-Liang . Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities[J]. Chin. Phys. Lett., 2011, 28(7): 4388-4390
[8] CHEN Bin**, YANG Yin-Tang, CHAI Chang-Chun, ZHANG Xian-Jun . Quantitatively Exploring the Effect of a Triangular Electrode on Performance Enhancement in a 4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetector[J]. Chin. Phys. Lett., 2011, 28(6): 4388-4390
[9] CAO Zhi-Shen, PAN Jian, CHEN Zhuo, ZHAN Peng, MIN Nai-Ben, WANG Zhen-Lin** . Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays[J]. Chin. Phys. Lett., 2011, 28(5): 4388-4390
[10] SUN Bao-Qing, GU Ying**, HU Xiao-Yong, GONG Qi-Huang** . A Trade-off between Propagation Length and Light Confinement in Cylindrical Metal-Dielectric Waveguides[J]. Chin. Phys. Lett., 2011, 28(5): 4388-4390
[11] LIU Xiao-Lan, PENG Xiao-Niu, YANG Zhong-Jian, LI Min, ZHOU Li** . Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates[J]. Chin. Phys. Lett., 2011, 28(5): 4388-4390
[12] ZHENG Jing-Gao, SUN Jia-Lin**, XUE Ping** . Negative Photoconductivity Induced by Surface Plasmon Polaritons in the Kretschmann Configuration[J]. Chin. Phys. Lett., 2011, 28(12): 4388-4390
[13] LIU Tao**, HUANG Zheng . High-Efficiency Graphene Photo Sensor Using a Transparent Electrode[J]. Chin. Phys. Lett., 2011, 28(10): 4388-4390
[14] WANG Xu-Dong, YE Yong-Hong, MA Ji, JIANG Mei-Ping. Influence of Filling Medium of Holes on the Negative-Index Response of Sandwiched Metamaterials[J]. Chin. Phys. Lett., 2010, 27(9): 4388-4390
[15] WANG Xu-Dong, YE Yong-Hong, ZHENG Chao. Dual-Band Negative-Index Materials with Sandwich Configuration[J]. Chin. Phys. Lett., 2010, 27(3): 4388-4390
Viewed
Full text


Abstract