Chin. Phys. Lett.  2008, Vol. 25 Issue (1): 16-19    DOI:
Original Articles |
Multiparty Quantum Secret Sharing of Quantum States Using Entanglement States
GUO Ying1;HUANG Da-Zu1,2;ZENG Gui-Hua3;LEE Moon Ho4
1School of Information Science and Engineering, Central South University, Changsha 4100832Department of Information Management, Hunan College of Finance and Economics, Changsha 4102053Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 2002404Department of Information and Communication Engineering, Chonbuk National University, Chonju 561-756, Korea
Cite this article:   
GUO Ying, HUANG Da-Zu, ZENG Gui-Hua et al  2008 Chin. Phys. Lett. 25 16-19
Download: PDF(310KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A multi-partite-controlled quantum secret sharing scheme using several non-orthogonal entanglement states is presented with unconditional security. In this scheme, the participants share the secret quantum state by exchanging the secret polarization angles of the disordered travel particles. The security
of the secret quantum state is also guaranteed by the non-orthogonal multi-partite-controlled entanglement states, the participants' secret polarizations, and the disorder of the travelling particles. Moreover, the present scheme is secure against the particle-number splitting attack and the intercept-and-resend attack. It may be still secure even if the distributed quantum state is embedded in a not-so-weak coherent-state pulse.
Keywords: 03.67.Dd      03.65.Ud     
Received: 21 May 2007      Published: 27 December 2007
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I1/016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Ying
HUANG Da-Zu
ZENG Gui-Hua
LEE Moon Ho
[1] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev.A 59 1829
[2] Xiao L, Long G L, Deng F G and Pan J. W. 2004 Phys.Rev. A 69 052307
[3] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[4] Bagherinezhad S and Karimipour V Phys. Rev. A 67044302
[5] Bandyopadhyay S 2000 Phys. Rev. A 62 012308
[6] Hsu L Y 2003 Phys. Rev. A 68 022306
[7] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K2004 Phys. Rev. Lett. 92 177903
[8]Deng F, Li X, Zhou H and Zhang Z 2005 Phys. Rev. A 72 044302
[9] Muller A, Herzog T, Huttner B, Tittel W, Zbinden H andGisin N 1997 Appl. Phys. Lett. 70 793
[10] Nielsen P M, Schori C, S$phi$rensen J L, Salvail L,D.{amgard I and Polzik E 2001 J. Mod. Opt. 48 1921
[11] Kye W, Kim C, Kim M S and Park Y 2005 Phys. Rev.Lett. 95 040501
[12] Derka R, Buzek V and Ekert A K 1998 Phys. Rev.Lett. 80 1571
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 16-19
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 16-19
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 16-19
[4] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 16-19
[5] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 16-19
[6] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 16-19
[7] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 16-19
[8] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 16-19
[9] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 16-19
[10] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 16-19
[11] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 16-19
[12] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 16-19
[13] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 16-19
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 16-19
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 16-19
Viewed
Full text


Abstract