Chin. Phys. Lett.  2007, Vol. 24 Issue (8): 2301-2303    DOI:
Original Articles |
Tunable Diode Laser Absorption Spectroscopy Detection of N2O at 2.1μm Using Antimonide Laser and InGaAs Photodiode
ZHANG Yong-Gang;ZHANG Xiao-Jun;ZHU Xiang-Rong;LI Ai-Zhen;LIU Sheng
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Cite this article:   
ZHANG Yong-Gang, ZHANG Xiao-Jun, ZHU Xiang-Rong et al  2007 Chin. Phys. Lett. 24 2301-2303
Download: PDF(251KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tunable diode laser absorption spectroscopy detection of N2O around 2.1μm is demonstrated by using a homemade InGaAsSb/AlGaAsSb MQW laser diode and an InGaAs wavelength extended photodiode. Details of the devices and the detection system are described. In the system, the laser is driven by low frequency pulses with long duration to form a wavelength scan around 4741cm-1; the absorption information is obtained from the detected signal of the photodiode. By using a gas cell with 15cm path length, a detection limit is estimated to be smaller than 0.2Torr.
Keywords: 52.25.Rv      42.55.Px      85.60.Dw     
Received: 26 December 2006      Published: 25 July 2007
PACS:  52.25.Rv  
  42.55.Px (Semiconductor lasers; laser diodes)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I8/02301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yong-Gang
ZHANG Xiao-Jun
ZHU Xiang-Rong
LI Ai-Zhen
LIU Sheng
[1] Smith S D, Crowder J G and Hardaway H R 2002 Proc. SPIE 4651 157
[2] Wagner J, Mann Ch, Rattunde M and Weimann G 2004 Appl.Phys. A 78 505
[3] MAttiello M et al 2006 Spectrochim. Acta A 63 952
[4] Schilt A et al 2004 Spectrochim. Acta A 60 3431
[5] Vicet A et al 2002 Spectrochim. Acta A 58 2405
[6] Zhang Y G et al 2001 J. Crystal Growth 227-228 582
[7] Zhang Y G et al 2006 Chin. Phys. Lett. 23 2262
[8] Vicet A et al 2003 IEE Proc. Optoelectron. 150 310
[9] McKellar A R W 2006 Spectrochim. Acta A 63 959
[10] Zhang Y G, Nan K G and Li A Z 2002 Spectrochim. Acta A 58 2323
[11] Rothman L S et al 2003 J. Quantitat. Spectrosc. Radiat.Transfer 82 5
[12] Zhang Y G et al 2006 Infrared Phys. Technol. 47 257
[13] Zhang Y G et al 2006 Chin. Phys. Lett. 23 1780
[14] Zhu C, Zhang Y G, Li A Z and Nan K J 2005 Semicond. Sci.Technol. 20 563
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 2301-2303
[2] MAO Yi-Wei, WANG Yao, CHEN Yang-Hua, XUE Zheng-Qun, LIN Qi, DUAN Yan-Min, SU Hui. Characteristic Optimization of 1.3 μm High-Speed MQW InGaAsP-AlGaInAs Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 2301-2303
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 2301-2303
[4] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 2301-2303
[5] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 2301-2303
[6] HU Shao-Xu,HAN Pei-De**,GAO Li-Peng,MAO Xue,LI Xin-Yi,FAN Yu-Jie. The Effects of Femtosecond Laser Irradiation and Thermal Annealing on the Optoelectronic Properties of Silicon Supersaturated with Sulfur[J]. Chin. Phys. Lett., 2012, 29(4): 2301-2303
[7] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 2301-2303
[8] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 2301-2303
[9] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 2301-2303
[10] ZHOU Kang**, XU Chen, XIE Yi-Yang, ZHAO Zhen-Bo, LIU Fa, SHEN Guang-Di . Reduction of the Far-Field Divergence Angle of an 850nm Multi-Leaf Holey Vertical Cavity Surface Emitting Laser[J]. Chin. Phys. Lett., 2011, 28(8): 2301-2303
[11] WANG Xiao-Long, TAO Tian-Jiong, CHENG Bing, WU Bin, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang** . A Digital Phase Lock Loop for an External Cavity Diode Laser[J]. Chin. Phys. Lett., 2011, 28(8): 2301-2303
[12] LIU Jie**, YANG Ji-Min, WANG Wei-Wei, ZHENG Li-He, SU Liang-Bi, XU Jun . Kerr-Lens Self-Mode-Locked Laser Characteristics of Yb:Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2011, 28(7): 2301-2303
[13] ZHOU Ya-Ting, **, SHI Yue-Chun, LI Si-Min, LIU Sheng-Chun, CHEN Xiang-Fei** . A Special Sampling Structure with an Arbitrary Equivalent-Phase-Shift for Semiconductor Lasers and Multiwavelength Laser Arrays[J]. Chin. Phys. Lett., 2011, 28(7): 2301-2303
[14] ZHANG Jin-Chuan, , WANG Li-Jun**, LIU Wan-Feng, LIU Feng-Qi, YIN Wen, LIU Jun-Qi, LI Lu, WANG Zhan-Guo . Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser[J]. Chin. Phys. Lett., 2011, 28(7): 2301-2303
[15] PENG Yu, **, ZHAO Yang, LI Ye, YANG Tao, CAO Jian-Ping, FANG Zhan-Jun, ZANG Er-Jun . Diode Laser Optically Injected by Resonance of a Monolithic Cavity[J]. Chin. Phys. Lett., 2011, 28(11): 2301-2303
Viewed
Full text


Abstract