Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1421-1424    DOI:
Original Articles |
Two Kinds of Magnetic Connection in Black-Hole Accretion Disc
Cite this article:   
LI Yang(李洋), WANG Ding-Xiong(汪定雄)$^{}$, GANZhao-Ming 2007 Chin. Phys. Lett. 24 1421-1424
Download: PDF(333KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss two kinds of magnetic connection (MC) in the black hole (BH)
accretion disc: the magnetic connection between the BH and the disc (MCHD) and that between the plunging region and the disc (MCPD). The magnetic field configuration is produced by an electric current flowing at the inner edge of the disc. It turns out that the transfer direction of energy and angular omentum depends on the BH spin and a parameter λ for adjusting the angular velocities of the plunging matter, which corresponds to at most five regions in the disc. The effect of MCPD results in a much steeper emissivity than a standard accretion disc in the inner disc, however it fails to reach the observation range 4.3--5.5 in several objects, such as Seyfert 1 galaxy MCG-6-30-15, microquasars XTE J1650-500 and GX 399-4.
Keywords: 97.60.Lf      98.62.Mw      98.62.Js     
Received: 14 November 2006      Published: 23 April 2007
PACS:  97.60.Lf (Black holes)  
  98.62.Mw (Infall, accretion, and accretion disks)  
  98.62.Js (Galactic nuclei (including black holes), circumnuclear matter, and bulges)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01421
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yang(李洋)
WANG Ding-Xiong(汪定雄)$^{}$
GANZhao-Ming
[1] Blandford R D 1999 Astrophysical Discs ed Sellwood J Aand Goodman J (Astronomical Society of Pacific Conference Series) 160 265
[2] Li L X 2000 Astrophys. J. 540 L17
[3] Li L X 2000 Astrophys. J. 567 463
[4] Li L X 2002 Phys. Rev. D. 65 084047
[5] Wang D X et al 2003 Astrophys. J. 595 109
[6] Wang D X et al 2006 Mon. Not. R. Astron. Soc. 374 647
[7] Novikov I D et al 1973 Black Holes ed Dewitt C (NewYork: Gordon and Breach) p 345
[8] Shapiro S L and Teukolsky S A 1983 Black Holes, WhiteDwarfs and Neutron Stars (New York: Wiley) p 357
[9] Wang D X 2000 Gen. Rel. Grav. 32 553
[10] Page D N and Thorne K S 1974 Astrophys. J. 191 499
[11] Wang D X et al 2003 Mon. Not. R. Astron. Soc. 342 851
[12] Wilms J et al 2001 Mon. Not. R. Astron. Soc. 328 L27
[13] Miller J M et al 2002 Astrophys. J. 570 69
[14] Miller J M et al 2004 Astrophys. J. 606 131
Related articles from Frontiers Journals
[1] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 1421-1424
[2] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 1421-1424
[3] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 1421-1424
[4] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 1421-1424
[5] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 1421-1424
[6] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 1421-1424
[7] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 1421-1424
[8] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 1421-1424
[9] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 1421-1424
[10] CHEN Liang, **, BAI Jin-Ming, . Is Low-Frequency-Peaked BL Lac Object OJ 287 a TeV Emitter?[J]. Chin. Phys. Lett., 2010, 27(11): 1421-1424
[11] WEI Ying-Chun, A. Taani**, PAN Yuan-Yue, WANG Jing, CAI Yan, LIU Gao-Chao, LUO A-Li, ZHANG Hong-Bo, ZHAO Yong-Heng . Neutron Star Motion in the Disk Galaxy[J]. Chin. Phys. Lett., 2010, 27(11): 1421-1424
[12] M. Akbar, Asghar Qadir. Gauss-Bonnet and Lovelock Gravities and the Generalized Second Law of Thermodynamics[J]. Chin. Phys. Lett., 2009, 26(6): 1421-1424
[13] JIAO Cheng-Liang, LU Ju-Fu. Slim Discs with Varying Accretion Rates[J]. Chin. Phys. Lett., 2009, 26(4): 1421-1424
[14] ZHANG Yu, , WANG Chun-Yan, GUI Yuan-Xing, WANG Fu-Jun, YU Fei. Dirac Quasinormal Modes of a Schwarzschild Black Hole surrounded by Free Static Spherically Symmetric Quintessence[J]. Chin. Phys. Lett., 2009, 26(3): 1421-1424
[15] YANG Jian, ZHAO Zheng, TIAN Gui-Hua, LIU Wen-Biao. Tortoise Coordinates and Hawking Radiation in a Dynamical Spherically Symmetric Spacetime[J]. Chin. Phys. Lett., 2009, 26(12): 1421-1424
Viewed
Full text


Abstract