Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 793-796    DOI:
Original Articles |
Phonon Transport and Thermal Conductivity in an Acoustic Filter
LU Jian-Duo1;SHAO Liang1;HOU Yang-Lai1;YI Lin2
1Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 4300812Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
LU Jian-Duo, SHAO Liang, HOU Yang-Lai et al  2007 Chin. Phys. Lett. 24 793-796
Download: PDF(315KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the phonon ballistic transmission and the thermal conductivity in a dielectric quantum structure. It is found that these observable quantities sensitively depend on geometric parameters, and are of quantum character. The total transmission coefficient as a function of the reduced waveguide-length exhibits periodical behaviour and the reduced thermal conductance decreases below the ideal universal value for the low temperature. Our results show that one can control the thermal conductivity of the structure and make all kinds of acoustic filters to match practical requirements in devices by adjusting the geometric parameters.
Keywords: 66.70.+f      63.22.+m      66.35.+a     
Received: 18 September 2006      Published: 08 February 2007
PACS:  66.70.+f  
  63.22.+m  
  66.35.+a (Quantum tunneling of defects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0793
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Jian-Duo
SHAO Liang
HOU Yang-Lai
YI Lin
[1] Sun Q F and Xie X C 2005 Phys. Rev. B 71 155321 Lu J D, Shao L, Hou Y L and Hou T P 2007 Solid State Commun. 141 61 Lu J D and Yi L 2006 Int. J. Mod. Phys. B 20 2283 Lu J D, Dai H M, Fang A H and Hou Y L 2007 Int. J. Mod.Phys. B (in press)
[2]Schwab K, Henrlksen E A and Worlock J M 2000 Nature 404 974
[3]Blencowe M P 1999 Phys. Rev. B 59 4992 Li W X, Chen K Q, and Duan W H 2003 J. Phys. D: Appl. Phys. 36 3027
[4]Angelescu D E, Cross M C and Roukes M L 1998 SuperlatticesMicrostructures 23 673
[5]Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232 Sun Q F, Yang P and Guo H 2002 Phys. Rev. Lett. 89 175901
[6]Gao H P, Wu B M, Li B, Wang M and Du K 2005 Chin. Phys.Lett. 22 915
[7]Tanaka Y, Yoshida F and Tamura S 2005 Phys. Rev. B 71 205308 Liu D S, Zhang D C, Xie S J and Mei L M 2005 Chin. Phys. Lett. 22 178
[8]Lu J D, Yi L, Li J X, Sun Y Z and Zhao H 2006 Commun. Theor.Phys. 46 568
[9]Takahiro Y, Satoshi W and Kazuyuki W 2004 Phys. Rev. Lett. 92 075502
[10]Xiao Y, Yan X H, Cao J X, Mao Y L, Deng Y X and Ding J W 2004 Chin. Phys. Lett. 21 517
[11]Leitner D M 2001 Phys. Rev. B 64 094201
[12]Gao C M, Zhang S Y, Zhang Z N, Shui X J and Jiang T 2005 Chin.Phys. Lett. 22 2309
[13]Palasantzas G 2004 Phys. Rev. B 70 153404
[14]Santamore D H and Cross M C 2001 Phys. Rev. B 63 184306
Related articles from Frontiers Journals
[1] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 793-796
[2] WANG Xin-Jun, LIU Jing-Feng, LUO Yong-Feng, LI Shui. The Influence of Cap and Defect Layer on Interface Optical-Phonon Modes in Finite Superlattices[J]. Chin. Phys. Lett., 2010, 27(1): 793-796
[3] WANG Xin-Jun, LIU Jing-Feng, LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect[J]. Chin. Phys. Lett., 2008, 25(6): 793-796
[4] LI Xiu-Ping, LA Shi-Jiang, WEN Yu-Bing, YAN Wei-Xian. Coherent Dynamics of Direct-Current-Driven Quantum-Dot-Array with Two Time-Dependent Embedded Impurities[J]. Chin. Phys. Lett., 2008, 25(4): 793-796
[5] ZHOU Ben-Liang, LIAO Wen-Hu, ZHOU Guang-Hui,. Conductance of a Quantum Dot in the Presence of a Phonon Field[J]. Chin. Phys. Lett., 2008, 25(2): 793-796
[6] PAN Rui-Qin, XU Zi-Jian, ZHU Zhi-Yuan. Length Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2007, 24(5): 793-796
[7] ZHANG Yong-Mei, XU Chen-Hua, XIONG Shi-Jie. Phonon Transmission and Thermal Conductance in Fibonacci Wire at Low Temperature[J]. Chin. Phys. Lett., 2007, 24(4): 793-796
[8] LI Xin-Xia, TANG Yi. Anomalous Heat Conduction in One-Dimensional Dimerized Lattices[J]. Chin. Phys. Lett., 2007, 24(4): 793-796
[9] LI Wen-Xia, LIU Tian-Yu, LIU Chang-Long. Acoustic Phonon Thermal Transport through a Nanostructure[J]. Chin. Phys. Lett., 2006, 23(9): 793-796
[10] GAO Chun-Ming, ZHANG Shu-Yi, ZHANG Zhong-Ning, SHUI Xiu-Ji, JIANG Tao. Thermal Properties of Materials Characterized by Scanning Electron-Acoustic Microscopy[J]. Chin. Phys. Lett., 2005, 22(9): 793-796
[11] GAO Hui-Ping, WU Bai-Mei, LI Bo, WANG Ming, DU Kan. Thermal Conductivity Anomalies Related to the Double-Bump of Resistivity in Nd0.7Sr0.3Mn1-xCrxO3[J]. Chin. Phys. Lett., 2005, 22(4): 793-796
[12] LIU De-Sheng, , ZHANG Da-Cheng, XIE Shi-Jie, MEI Liang-Mo,. Polaronic Tunnelling in Organic Triblock Copolymers[J]. Chin. Phys. Lett., 2005, 22(1): 793-796
[13] XIAO Yang, YAN Xiao-Hong, CAO Jue-Xian, MAO Yu-Liang, DENG Yu-Xiang, DING Jian-Wen. Lattice Dynamics of Potassium-Doped Single-Walled Carbon Nanotubes [J]. Chin. Phys. Lett., 2004, 21(3): 793-796
[14] YANG Zheng, SHI Yi, LIU Jian-Lin, YAN Bo, HUANG Zhuang-Xiong, PU Lin, ZHENG You-Dou, WANG Kang-Long. Strain and Phonon Confinement in Self-Assembled Ge Quantum Dot Superlattices[J]. Chin. Phys. Lett., 2003, 20(11): 793-796
[15] LÜ, You-Ming, SHEN De-Zhen, LIU Yi-Chun, LI Bing-Hui, LIANG Hong-Wei, ZHANG Ji-Ying, FAN Xi-Wu. Optical Properties of ZnCdSe/ZnMgSe Multiple Quantum Wells Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2002, 19(8): 793-796
Viewed
Full text


Abstract