Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3567-3569    DOI:
Original Articles |
Effects of Different Dispersion Methods on the Microscopical Morphologyof TiO2 Film
LAN Xiao-Hua;YANG Shu-Qin;ZOU Yu;WANG Zhi-An;HUANG Ning-Kang
Key Lab of Radiation Physics and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064
Cite this article:   
LAN Xiao-Hua, YANG Shu-Qin, ZOU Yu et al  2007 Chin. Phys. Lett. 24 3567-3569
Download: PDF(1505KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nanocrystalline porous TiO2 films were prepared on conducting glass supports (ITO) by processed commercial TiO2 nanometre powder (P25). Three methods of physical dispersing for TiO2 powder, i.e. grinding, magnetic stirring, sonicleaning, were used to disperse TiO2 nanometre powder. Surface morphologies of TiO2 films were observed by optic-microscope and SEM. It is
found that the surface morphologies of TiO2 films are determined not only by the dispersing methods but also by the percentage of TiO2 powder in the dispersing system. Different film morphologies can be obtained under the same preparation condition but with different dispersing methods. A lot of cracks exist on the film surface for which the TiO2 slurry is dispersed by grinding. Magnetic stirring leads to some white points and micro-holes on the
film surface. Only a few of micro-holes can be observed on the film surface, in which the TiO2 slurry is dispersed by sonicleaning. Different surface morphologies can also be found with different thicknesses of TiO2 films. Different film thicknesses are due to different percentages of TiO2 powder in the slurry. The related mechanism leading to different features of the surface morphologies for the TiO2 films is discussed.
Keywords: 70.Kj      82.70.Dn      84.60.Dn     
Received: 18 April 2007      Published: 03 December 2007
PACS:  82 (Physical chemistry and chemical physics)  
  70.Kj  
  82.70.Dn  
  84.60.Dn  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03567
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LAN Xiao-Hua
YANG Shu-Qin
ZOU Yu
WANG Zhi-An
HUANG Ning-Kang
[1] Oregan B and Gratzel M 1991 Nature 353 737
[2] Seigo I, Takurou N, Murakami, P C, Paul L, Carole G andMohammad K 2007 Thin Solid Films (in press)
[3] Teruhisa O, Koji S, Kojiro T and Michio M 2001 J.Catal. 203 82
[4] Nazeeruddin M K, Kay A, Rodicio I, Humphry B R, Muller E,Liska P, Vlachopoulos N and Gratzel M 1993 J. Am. Chem. Soc. 115 6382
[5] Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M and Wang FM 2004 J. Am. Chem. Soc. l26 14943
[6] Zumeta I, Espinosa R, Ayllon J A, Domenech X, Rodriguez CR and Vigil E 2003 Solar Energy Mater. Solar Cells 76 15
[7] Porter J F, Li Y G and Chan C K 1999 J. Mater. Sci. 34 1523
[8] Hagfeldt A, Bjorksten U and Lindquist S E 1992 Solar Energy Mater. Solar Cells 27 293
[9] Dai S Y and Wang K J 2003 Chin. Phys. Lett. 6953
[10] Seigo I, Takayuki K, Yuji W and Shozo Y 2003 Solar Energy Mater. Solar Cells 76 3
Related articles from Frontiers Journals
[1] WANG Xian-Ju, LI Hai, LI Xin-Fang, WANG Zhou-Fei**, LIN Fang . Stability of TiO2 and Al2O3 Nanofluids[J]. Chin. Phys. Lett., 2011, 28(8): 3567-3569
[2] M. Todica**, C. V. Pop, Luciana Udrescu, Traian Stefan . Spectroscopy of a Gamma Irradiated Poly(Acrylic Acid)-Clotrimazole System[J]. Chin. Phys. Lett., 2011, 28(12): 3567-3569
[3] M. Todica. Analysis of Rheological Behavior of Some Aqueous PEO Gels under Thermal Treatment[J]. Chin. Phys. Lett., 2009, 26(7): 3567-3569
[4] WANG Xian-Ju, LI Xin-Fang. Influence of pH on Nanofluids' Viscosity and Thermal Conductivity[J]. Chin. Phys. Lett., 2009, 26(5): 3567-3569
[5] ZHOU Yan-Fang, XIANG Wan-Chun, FANG Shi-Bi, CHEN Shen, ZHOU Xiao-Wen, ZHANG Jing-Bo, LIN Yuan. Effect of Poly(Ether Urethane) Introduction on the Performance of Polymer Electrolyte for All-Solid-State Dye-Sensitized Solar Cells[J]. Chin. Phys. Lett., 2009, 26(12): 3567-3569
[6] DUAN Yong-Ping, MA Cong-Xiao, LI Jia-Yun, LI Cong, WANG Dan, LI Mei-Li, SUN Min-Hua. Configurational Entropy, Diffusivity and Potential Energy Landscape in Liquid Argon[J]. Chin. Phys. Lett., 2009, 26(1): 3567-3569
[7] M. Todica. Observation of Hydration--Drying Effect on Clotrimazole--Carbopol System[J]. Chin. Phys. Lett., 2008, 25(7): 3567-3569
[8] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 3567-3569
[9] WANG Miao, ZHANG Qing-Li, WENG Yu-Xiang, LIN Yuan, XIAO Xu-Rui. Investigation of Mechanisms of Enhanced Open-Circuit Photovoltage of Dye-Sensitized Solar Cells Based the Electrolyte Containing 1-Hexyl-3-Methylimidazolium Iodide[J]. Chin. Phys. Lett., 2006, 23(3): 3567-3569
[10] SUN Zhi-Wei, LIU Jie, XU Sheng-Hua. Towards an Understanding of the Influence of Sedimentation on Colloidal Aggregation by Peclet Number[J]. Chin. Phys. Lett., 2005, 22(8): 3567-3569
[11] WEN Qi-Ye, ZHANG Huai-Wu, JIANG Xiang-Dong, TANG Xiao-Li, ZHONG Zhi-Yong, John Q. Xiao. Effects of Layer Deposition Sequence on Microstructure and Magnetostatic Coupling of Spin-Valves with Amorphous CoNbZr Layer[J]. Chin. Phys. Lett., 2005, 22(3): 3567-3569
[12] HU Lin-Hua, DAI Song-Yuan, WANG Kong-Jia. Influence of Particle Coordination Number in Nanoporous TiO2 Films on the Performance of Dye-Sensitized Solar Cell Modules[J]. Chin. Phys. Lett., 2005, 22(2): 3567-3569
[13] LIU Jie, SUN Zhi-Wei, AA Yan. Non-Gravitational Effects with Density-Matching in Evaluating the Influence of Sedimentation on Colloidal Coagulation[J]. Chin. Phys. Lett., 2005, 22(12): 3567-3569
[14] SUN Zhi-Wei, CHEN Zhi-Ying. Computer Simulation of Influence of Sedimentation on Rapid Coagulation[J]. Chin. Phys. Lett., 2003, 20(9): 3567-3569
[15] DAI Song-Yuan, WANG Kong-Jia. Optimum Nanoporous TiO2 Film and Its Application to Dye-sensitized Solar Cell[J]. Chin. Phys. Lett., 2003, 20(6): 3567-3569
Viewed
Full text


Abstract