Chin. Phys. Lett.  2005, Vol. 22 Issue (12): 3199-3202    DOI:
Original Articles |
Non-Gravitational Effects with Density-Matching in Evaluating the Influence of Sedimentation on Colloidal Coagulation
LIU Jie;SUN Zhi-Wei;AA Yan
NML, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
LIU Jie, SUN Zhi-Wei, AA Yan 2005 Chin. Phys. Lett. 22 3199-3202
Download: PDF(205KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The method of density matching between the solid and liquid phases is often adopted to effectively eliminate the effect of sedimentation of suspensions in studies on dynamic behaviour of a colloidal system. However, the associated changes in the solvent composition may bring side effects to the properties investigated and therefore might lead to a faulty conclusion if the relevant correction is not made. To illustrate the importance of this side effect, we present an example of the sedimentation influence on the coagulation rate of suspensions of 2μm (diameter) polystyrene. The liquid mixtures, in the proper proportions of water (H2O), deuterium oxide (D2O) and methanol (MeOH) as the liquid phase, density-matched and unmatched experiments are performed. Besides the influence of viscosity, the presence of methanol in solvent media, used to enhance the sedimentation effect, causes significant changes (reduction) in rapid coagulation rates compared to that in pure water. Without the relevant corrections for those non-gravitational factors it seems that gravitational sedimentation would retard the coagulation. The magnitude of the contribution from the non-gravitational factor is quantitatively determined, making the relevant correction possible. After necessary corrections for all factors, our experiments show that the influence of the sedimentation on coagulation rates at the initial stage of the coagulation is not observable.
Keywords: 82.70.Kj      82.70.Dd      83.10.Mj     
Published: 01 December 2005
PACS:  82.70.Kj (Emulsions and suspensions)  
  82.70.Dd (Colloids)  
  83.10.Mj (Molecular dynamics, Brownian dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I12/03199
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jie
SUN Zhi-Wei
AA Yan
Related articles from Frontiers Journals
[1] WANG Xian-Ju, LI Hai, LI Xin-Fang, WANG Zhou-Fei**, LIN Fang . Stability of TiO2 and Al2O3 Nanofluids[J]. Chin. Phys. Lett., 2011, 28(8): 3199-3202
[2] XIE Shi-Feng, CHEN Shang-Da**, SOH Ai-Kah . The Effect of Atomic Vacancies and Grain Boundaries on Mechanical Properties of GaN Nanowires[J]. Chin. Phys. Lett., 2011, 28(6): 3199-3202
[3] LIAN Zeng-Ju** . Interaction of a Spherical Colloid and a Porous Membrane in a Bulk Electrolyte[J]. Chin. Phys. Lett., 2011, 28(5): 3199-3202
[4] M. Todica**, C. V. Pop, Luciana Udrescu, Traian Stefan . Spectroscopy of a Gamma Irradiated Poly(Acrylic Acid)-Clotrimazole System[J]. Chin. Phys. Lett., 2011, 28(12): 3199-3202
[5] M. Todica. Analysis of Rheological Behavior of Some Aqueous PEO Gels under Thermal Treatment[J]. Chin. Phys. Lett., 2009, 26(7): 3199-3202
[6] WANG Xian-Ju, LI Xin-Fang. Influence of pH on Nanofluids' Viscosity and Thermal Conductivity[J]. Chin. Phys. Lett., 2009, 26(5): 3199-3202
[7] M. Todica. Observation of Hydration--Drying Effect on Clotrimazole--Carbopol System[J]. Chin. Phys. Lett., 2008, 25(7): 3199-3202
[8] YAO Can, WANG Yu-Ren, LAN Ding, DUAN Li, KANG Qi. An in-situ Observation on Initial Aggregation Process of Colloidal Particles near Three-Phase Contact Line of Air, Water and Vertical Substrate[J]. Chin. Phys. Lett., 2008, 25(10): 3199-3202
[9] GUO Ji-Yuan, XIAO Chang-Ming. Grand Canonical Ensemble Monte Carlo Simulation of Depletion Interactions in Colloidal Suspensions[J]. Chin. Phys. Lett., 2008, 25(1): 3199-3202
[10] CHEN Jiang-Xing, JIAO Zheng-Kuan. Mode-Locking Behaviour in Driven Colloids with Random Pinning[J]. Chin. Phys. Lett., 2007, 24(4): 3199-3202
[11] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 3199-3202
[12] PU Sheng-Li, CHEN Xian-Feng, DI Zi-Yun, GENG Tao, XIA Yu-Xing. Electrical Properties of Nanostructured Magnetic Colloid and Influence of Magnetic Field[J]. Chin. Phys. Lett., 2007, 24(11): 3199-3202
[13] LI Chun-Shu, GAO Hai-Xia, XIAO Chang-Ming. Depletion Interactions in a Cylindric Pipeline with a Small Shape Change[J]. Chin. Phys. Lett., 2007, 24(11): 3199-3202
[14] XIAO Chang-Ming, GUO Ji-Yuan, HU Ping. A Monte Carlo Study of Influences on Depletion Force from Another Large Sphere in Colloidal Suspensions[J]. Chin. Phys. Lett., 2006, 23(4): 3199-3202
[15] SUN Zhi-Wei, LIU Jie, XU Sheng-Hua. Towards an Understanding of the Influence of Sedimentation on Colloidal Aggregation by Peclet Number[J]. Chin. Phys. Lett., 2005, 22(8): 3199-3202
Viewed
Full text


Abstract