Chin. Phys. Lett.  2005, Vol. 22 Issue (11): 2873-2876    DOI:
Original Articles |
Simulation of Blood Flow at Vessel Bifurcation by Lattice Boltzmann Method
KANG Xiu-Ying1;LIU Da-He1;ZHOU Jing1;JIN Yong-Juan2
1Applied Optics Beijing Area Major Laboratory, Department of Physics, Beijing Normal University, Beijing 100875 2Institute of Hematology, Chinese Academy of Medical Sciences, Tianjin 300020
Cite this article:   
KANG Xiu-Ying, LIU Da-He, ZHOU Jing et al  2005 Chin. Phys. Lett. 22 2873-2876
Download: PDF(257KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The application of the lattice Boltzmann method to the large vessel bifurcation blood flow is investigated in a wide range of Reynolds numbers. The velocity, shear stress and pressure distributions at the bifurcation are presented in detail. The flow separation zones revealed with increase of Reynolds number are located in the areas of the daughter branches distal to the outer corners of the bifurcation where some deposition of particular blood components might occur to form arteriosclerosis. The results also demonstrate that the lattice Boltzmann method is adaptive to simulating the flow in larger vessels under a high Reynolds number.
Keywords: 47.11.+j      47.27.Lx      87.19.Tt     
Published: 01 November 2005
PACS:  47.11.+j  
  47.27.Lx  
  87.19.Tt  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I11/02873
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KANG Xiu-Ying
LIU Da-He
ZHOU Jing
JIN Yong-Juan
Related articles from Frontiers Journals
[1] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 2873-2876
[2] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 2873-2876
[3] XU Wan-Hai**, DU Jie, YU Jian-Xing, LI Jing-Cheng . Wake Oscillator Model Proposed for the Stream-Wise Vortex-Induced Vibration of a Circular Cylinder in the Second Excitation Region[J]. Chin. Phys. Lett., 2011, 28(12): 2873-2876
[4] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method[J]. Chin. Phys. Lett., 2010, 27(9): 2873-2876
[5] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2009, 26(7): 2873-2876
[6] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, LI Hua-Bing. Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow[J]. Chin. Phys. Lett., 2009, 26(4): 2873-2876
[7] DAI Zheng-De, XIAN Da-Quan, LI Dong-Long. Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimensional Boussinesq Equation[J]. Chin. Phys. Lett., 2009, 26(4): 2873-2876
[8] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, CHEN Yan-Yan. Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels[J]. Chin. Phys. Lett., 2008, 25(9): 2873-2876
[9] LAI Hui-Lin, MA Chang-Feng,. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation[J]. Chin. Phys. Lett., 2008, 25(6): 2873-2876
[10] DAI Zheng-De, LIU Zhen-Jiang, LI Dong-Long. Exact Periodic Solitary-Wave Solution for KdV Equation[J]. Chin. Phys. Lett., 2008, 25(5): 2873-2876
[11] LI Dong-Long, DAI Zheng-De, GUO Yan-Feng. Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation[J]. Chin. Phys. Lett., 2008, 25(12): 2873-2876
[12] QI Mei-Lan, HE Hong-Liang, YAN Shi-Lin. Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading[J]. Chin. Phys. Lett., 2007, 24(8): 2873-2876
[13] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 2873-2876
[14] MA Chang-Feng, , SHI Bao-Chang. Lattice Bhatnagar--Gross--Krook Simulations of Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Opposing Temperature and Concentration Gradients[J]. Chin. Phys. Lett., 2006, 23(7): 2873-2876
[15] LU Xiao-Yang, YI Hou-Hui, CHEN Ji-Yao, FANG Hai-Ping. Lattice BGK Simulations of the Blood Flow in Elastic Vessels[J]. Chin. Phys. Lett., 2006, 23(3): 2873-2876
Viewed
Full text


Abstract