Chin. Phys. Lett.  2005, Vol. 22 Issue (10): 2723-2726    DOI:
Original Articles |
Oscillation of Quasi-Steady Earth’s Magnetosphere
HU You-Qiu1;GUO Xiao-Cheng1;LI Guo-Qiang1;WANG Chi2;HUANG Zhao-Hui2
1School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 2Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
HU You-Qiu, GUO Xiao-Cheng, LI Guo-Qiang et al  2005 Chin. Phys. Lett. 22 2723-2726
Download: PDF(228KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A three-dimensional magnetohydrodynamics (MHD) code is designed specially for global simulations of the solar wind--magnetosphere--ionosphere system. The code possesses a high resolution in capturing MHD shocks and discontinuities and a low numerical dissipation in examining possible instabilities inherent in the system. The ionosphere is approximated by a spherical shell with uniform height-integrated conductance. The solar wind is steady, and the interplanetary magnetic field is either due northward or due southward. The code is then run to find solutions of the whole system. It is found that the system has never reached a steady state, but keeps oscillating with a period of about one hour in terms of density variation at the geosynchronous orbit. However, if a certain artificial resistivity is added either in the whole numerical box or in the reconnection sites only, the reconnections change from intermittent to steady regime and the oscillation disappears accordingly. We conclude that the Earth’s magnetosphere tends to be in a ceaseless oscillation status because of the low dissipation property inherent in the magnetospheric plasma, and the oscillation may be driven by intermittent magnetic reconnections that occur somewhere in the magnetopause and/or the magnetotail.
Keywords: 94.30.-d      94.30.Tz      94.30.Va     
Published: 01 October 2005
PACS:  94.30.-d (Physics of the magnetosphere)  
  94.30.Tz (Electromagnetic wave propagation)  
  94.30.Va (Magnetosphere interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I10/02723
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU You-Qiu
GUO Xiao-Cheng
LI Guo-Qiang
WANG Chi
HUANG Zhao-Hui
Related articles from Frontiers Journals
[1] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 2723-2726
[2] LI Shi-You, DENG Xiao-Hua, ZHOU Meng, YUAN Zhi-Gang, WANG Jing-Fang, LIN Xi, LIN Min-Hui, FU Song. Cluster Observation of Eelectrostatic Solitary Waves around Magnetic Null Point in Thin Current Sheet[J]. Chin. Phys. Lett., 2010, 27(1): 2723-2726
[3] PENG Zhong, HU You-Qiu. Contribution from the Earth's Bow Shock to Region 1 Current under Low Alfvén Mach Numbers[J]. Chin. Phys. Lett., 2009, 26(4): 2723-2726
[4] FU Hui-Shan, CAO Jin-Bin, YANG Biao, Lucek E, Rème H, Dandouras I. ULF Waves Associated with Solar Wind Deceleration in the Earth's Foreshock[J]. Chin. Phys. Lett., 2009, 26(11): 2723-2726
[5] XIAO Fu-Liang, CHEN Lun-Jin, ZHENG Hui-Nan, WANG Shui, GUO Jun. A Three-Dimensional Ray-Tracing Study of R-X Mode Waves during High Geomagnetic Activity[J]. Chin. Phys. Lett., 2008, 25(1): 2723-2726
[6] XIAO Fu-Liang, ZHOU Qing-Hua, HE Hui-Yong. Modelling Energetic Electrons by a Kappa-Loss-Cone Distribution at Geostationary Orbit[J]. Chin. Phys. Lett., 2007, 24(7): 2723-2726
[7] CHENG Zheng-Wei, SHI Jian-Kui, ZHANG Tie-Long, LIU Zhen-Xing. Probability of Field-Aligned Currents Observed by the Satellite Cluster in the Magnetotail[J]. Chin. Phys. Lett., 2007, 24(4): 2723-2726
[8] YUAN Zhi-Gang, DENG Xiao-Hua, PANG Ye, LI Shi-You, WANG Jing-Fang. Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection[J]. Chin. Phys. Lett., 2007, 24(4): 2723-2726
[9] CHEN Lun-Jin, ZHENG Hui-Nan, XIAO Fu-Liang, WANG Shui. Effects of Spatial Variation of Thermal Electrons on Whistler-Mode Waves in Magnetosphere[J]. Chin. Phys. Lett., 2006, 23(9): 2723-2726
[10] YANG Lei, WU De-Jin. Effects of Charge in Heavy Ions on Solitary Kinetic Alfvén Waves in Double-Ion Plasmas[J]. Chin. Phys. Lett., 2006, 23(8): 2723-2726
[11] DUAN Su-Ping, LIU Zhen-Xing, CAO Jin-Bin, SHI Jian-Kui, LU Li, LI Zhong-Yuan, Q. G. Zong, H. Reme, N. Cornilleau-Wehrlin, A. Balogh, M. Andre. Analysis of the Interaction between Low-Frequency Waves and Ions in the High-Altitude Cusp Region Observed by Satellite Cluster[J]. Chin. Phys. Lett., 2006, 23(5): 2723-2726
[12] TANG Chao-Ling, LU Li, LI Zhong-Yuan, LIU Zhen-Xing. Bifurcated Current Sheet Structure in a Quiet Time by Cluster Spacecrafts[J]. Chin. Phys. Lett., 2006, 23(4): 2723-2726
[13] XIAO Fu-Liang, ZHAO Hua, HE Hui-Yong. Excitation of Whistler-Mode (Chorus) Emissions during Terrestrial Substorms[J]. Chin. Phys. Lett., 2005, 22(9): 2723-2726
[14] GUO Xiao-Cheng, HU You-Qiu, WANG Chi. Earth’s Magnetosphere Impinged by Interplanetary Shocks of Different Orientations[J]. Chin. Phys. Lett., 2005, 22(12): 2723-2726
[15] XIAO Zuo, WANG Wen-Qing, HAO Yong-Qiang. Nonlinear-Ion-Acoustic-Wave Instability, Threshold, Half Width of Trapped Region and Transition Region[J]. Chin. Phys. Lett., 2004, 21(12): 2723-2726
Viewed
Full text


Abstract