Chin. Phys. Lett.  1999, Vol. 16 Issue (5): 313-315    DOI:
Original Articles |
A Method to Generate New Exact Solutions from a Known Stationary Solution
LIU Zeng-rong;HUANG De-bin
Departement of Mathmatics, Shanghai University, Shanghai 201800 also LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
LIU Zeng-rong, HUANG De-bin 1999 Chin. Phys. Lett. 16 313-315
Download: PDF(175KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By combining the Backlund transformations and the AKNS system [Study in Appl. Math. 53 (1974) 249.] which is a linear eigenvalue problem of the corresponding evolution equation, a method to find new exact solutions from known stationary solutions for nonlinear integrable equations is proposed. As an example, Korteweg de Vries (KdV) equation is used to illustrate this method, and a class of new exact solutions of KdV equation is obtained.
Keywords: 02.30.Jr      02.30.Hq     
Published: 01 May 1999
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Hq (Ordinary differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1999/V16/I5/0313
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Zeng-rong
HUANG De-bin
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 313-315
[2] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 313-315
[3] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 313-315
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 313-315
[5] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 313-315
[6] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 313-315
[7] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 313-315
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 313-315
[9] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 313-315
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 313-315
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 313-315
[12] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 313-315
[13] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 313-315
[14] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 313-315
[15] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 313-315
Viewed
Full text


Abstract