Chin. Phys. Lett.  1998, Vol. 15 Issue (3): 159-161    DOI:
Original Articles |
Electrodynamical Response to a High Frequency Standing Gravitational Wave
LI Fang-yu;TANG Meng-xi
Department of Physics, Chongqing University, Chongqing 630044 Department of Physics, Zhongshan University, Guangzhou 510275
Cite this article:   
LI Fang-yu, TANG Meng-xi 1998 Chin. Phys. Lett. 15 159-161
Download: PDF(220KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electrodynamical response (ER) to the high frequency standing gravitational wave (GW ) of a composite toroidal electromagnetic resonant system is investigated, corresponding perturbation solutions are given, the advantages and shortcomings of electromagnetic detection to the standing GW by means of a static magnetic field and superconducting resonant cavity are compared. A concrete numerical calculation shows that under the reasonable states of the present technology, the ER to the standing GW can probably be displayed at the level of the single photon avalanche effect.
Keywords: 04.80.Nn      04.30.Db     
Published: 01 March 1998
PACS:  04.80.Nn (Gravitational wave detectors and experiments)  
  04.30.Db (Wave generation and sources)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I3/0159
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Fang-yu
TANG Meng-xi
Related articles from Frontiers Journals
[1] GAO Fen, ZHOU Ze-Bing**, LUO Jun . Feasibility for Testing the Equivalence Principle with Optical Readout in Space[J]. Chin. Phys. Lett., 2011, 28(8): 159-161
[2] ZHOU Lin, , XIONG Zong-Yuan, , YANG Wei, , TANG Biao, , PENG Wen-Cui, , WANG Yi-Bo, , XU Peng, , WANG Jin, ZHAN Ming-Sheng, ** . Measurement of Local Gravity via a Cold Atom Interferometer[J]. Chin. Phys. Lett., 2011, 28(1): 159-161
[3] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 159-161
[4] LI Fang-Yu, YANG Nan. Phase and Polarization State of High-Frequency Relic Gravitational Waves[J]. Chin. Phys. Lett., 2009, 26(5): 159-161
[5] LU Jun-Li, Wan Mew-Bing. Oscillations and Collapses of Proto--Neutron Stars[J]. Chin. Phys. Lett., 2009, 26(1): 159-161
[6] FU Jian, TANG Shao-Fang. Possible Approach to Improve Sensitivity of a Michelson Interferometer[J]. Chin. Phys. Lett., 2007, 24(8): 159-161
[7] LI Fang-Yu, CHEN Ying, WANG Ping. Electromagnetic Response of High-Frequency Gravitational Waves by Coupling Open Resonant Cavity[J]. Chin. Phys. Lett., 2007, 24(12): 159-161
[8] ZHANG Xian-Hong, LI Fang-Yu. Energy--Momentum Pseudo-Tensor of Relic Gravitational Wave of Both the Polarized States[J]. Chin. Phys. Lett., 2006, 23(6): 159-161
[9] LEE Zhi-Jun, WAN Zhen-Zhu,. Noises in Detecting Relic Gravitational Wave[J]. Chin. Phys. Lett., 2006, 23(12): 159-161
[10] LI Fang-Yu, CHEN Zhen-Ya, YI Ying. Utilization of Electromagnetic Detector for Selection and Detection of High-Frequency Relic Gravitational Waves[J]. Chin. Phys. Lett., 2005, 22(9): 159-161
[11] LI Fang-Yu, YANG Nan. Resonant Interaction Between a Weak Gravitational Wave and a Microwave Beam in the Double Polarized States Through a Static Magnetic Field[J]. Chin. Phys. Lett., 2004, 21(11): 159-161
[12] LI Fang-Yu, WU Zhang-Han, ZHANG Yi. Coupling of a Linearized Gravitational Wave to Electromagnetic Fields and Relevant Noise Issues[J]. Chin. Phys. Lett., 2003, 20(11): 159-161
[13] HE Yu-Mei, WANG Wei-Min, YAO Zhen-Xing. A Procedure for Modeling Shallow Dislocation Sources with Tensional Component[J]. Chin. Phys. Lett., 2002, 19(3): 159-161
[14] ZHAO Peng-Fei, HUANG Yu-Ying, TANG Meng-Xi. A New Ultra-low Frequency Passive Vertical Vibration Isolation System [J]. Chin. Phys. Lett., 2002, 19(2): 159-161
[15] LI Fang-Yu, TANG Meng-Xi. Electrogravitational Resonance of a Gaussian Beam to a High-Frequency Relic Gravitational Wave[J]. Chin. Phys. Lett., 2001, 18(12): 159-161
Viewed
Full text


Abstract