Chin. Phys. Lett.  2022, Vol. 39 Issue (9): 097701    DOI: 10.1088/0256-307X/39/9/097701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Ferroelectricity in Charge-Ordering Crystals with Centrosymmetric Lattices
Yali Yang1,2, Laurent Bellaiche3, and Hongjun Xiang1,2*
1Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
2Shanghai Qizhi Institution, Shanghai 200232, China
3Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
Cite this article:   
Yali Yang, Laurent Bellaiche, and Hongjun Xiang 2022 Chin. Phys. Lett. 39 097701
Download: PDF(5262KB)   PDF(mobile)(7447KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The switchability between the two ferroelectric (FE) states of an FE material makes FEs widely used in memories and other electronic devices. However, for conventional FEs, its FE switching only occurs between the two FE states whose spatial inversion symmetry is broken. The search for FE materials is therefore subject to certain limitations. We propose a new type of FEs whose FE states still contain spatial inversion centers. The change in polarization of this new type of FEs originates from electronic transfer between two centrosymmetric FE states under an external electric field. Taking BaBiO$_{3}$ as an example, we show that charge-ordering systems can be a typical representative of this new type of FEs. Moreover, unlike traditional ferroelectrics, the change in polarization in this new type of FEs is quantum in nature with the direction dependent on the specific FE transition path. Our work therefore not only extends the concept of FEs but may also open up a new way to find multiferroics.
Received: 21 August 2022      Editors' Suggestion Published: 03 September 2022
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/9/097701       OR      https://cpl.iphy.ac.cn/Y2022/V39/I9/097701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yali Yang
Laurent Bellaiche
and Hongjun Xiang
[1] Valasek J 1921 Phys. Rev. 17 475
[2] von Hippel A, Breckenridge R G, Chesley F G, and Tisza L 1946 Ind. Eng. Chem. 38 1097
[3] Scott J F 2007 Science 315 954
[4] Hoffmann M, Fengler F P G, Herzig M, Mittmann T, Max B, Schroeder U, Negrea R, Lucian P, Slesazeck S, and Mikolajick T 2019 Nature 565 464
[5] Cheema S S, Kwon D, Shanker N, Dos R R, Hsu S L, Xiao J, Zhang H, Wagner R, Datar A, McCarter M R, Serrao C R, Yadav A K, Karbasian G, Hsu C H, Tan A J, Wang L C, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar R V, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J, and Salahuddin S 2020 Nature 580 478
[6] Garcia V and Bibes M 2012 Nature 483 279
[7] Muralt P 2000 J. Micromech. Microeng. 10 136
[8] Bellaiche L, Garcia A, and Vanderbilt D 2000 Phys. Rev. Lett. 84 5427
[9] Bowen C R, Kim H A, Weaver P M, and Dunn S 2014 Energy & Environ. Sci. 7 25
[10] Zhong W, Vanderbilt D, and Rabe K M 1994 Phys. Rev. Lett. 73 1861
[11]Strukov B A and Levanyuk A P 1998 Ferroelectric Phenomena in Crystals (Berlin: Springer)
[12]Rabe K M, Ahn C H, and Triscone J M 2007 Physics of Ferroelectrics: A Modern Perspective, in Topics in Applied Physics vol 105 (Berlin: Springer)
[13] Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J M, and Ghosez P 2008 Nature 452 732
[14] Benedek N A and Fennie C J 2011 Phys. Rev. Lett. 106 107204
[15] Oh Y S, Luo X, Huang F T, Wang Y, and Cheong S W 2015 Nat. Mater. 14 407
[16] Yang Y L, Xiang H J, Zhao H J, Stroppa A, Zhang J C, Cao S X, Iniguez J, Bellaiche L, and Ren W 2017 Phys. Rev. B 96 104431
[17] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, and Tokura Y 2003 Nature 426 55
[18] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[19] Dong S, Xiang H, and Dagotto E 2019 Natl. Sci. Rev. 6 629
[20] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[21] Spaldin N A 2012 J. Solid State Chem. 195 2
[22] Portengen T, Ostreich T, and Sham L J 1996 Phys. Rev. B 54 17452
[23] Farkašovský P 2002 Phys. Rev. B 65 081102
[24] Batista C D 2002 Phys. Rev. Lett. 89 166403
[25] Ikeda N, Matsuo Y, Mori S, and Yoshii K 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1043
[26] Yamakawa H, Miyamoto T, Morimoto T, Yada H, Kinoshita Y, Sotome M, Kida N, Yamamoto K, Iwano K, Matsumoto Y, Watanabe S, Shimoi Y, Suda M, Yamamoto H M, Mori H, and Okamoto H 2016 Sci. Rep. 6 20571
[27] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, and Kito H 2005 Nature 436 1136
[28] Zhang Y, Yang H X, Ma C, Tian H F, and Li J Q 2007 Phys. Rev. Lett. 98 247602
[29] Yamauchi K, Fukushima T, and Picozzi S 2009 Phys. Rev. B 79 212404
[30] Xiang H J, Kan E J, Wei S H, Whangbo M H, and Yang J 2009 Phys. Rev. B 80 132408
[31] Efremov D V, van den Brink J, and Khomskii D I 2004 Nat. Mater. 3 853
[32] Thonhauser T and Rabe K M 2006 Phys. Rev. B 73 212106
[33] Kennedy B J, Howard C J, Knight K S, Zhang Z, and Zhou Q 2006 Acta Crystallogr. B 62 537
[34] Franchini C, Sanna A, Marsman M, and Kresse G 2010 Phys. Rev. B 81 085213
[35] Foyevtsov O, Balandeh S, Chi S, and Sawatzky G 2019 Physica B 570 328
[36] Nakamura T, Kose S, and Sata T 1971 J. Phys. Soc. Jpn. 31 1284
[37] Tajima S, Uchida S, Masaki A, Takagi H, Kitazawa K, Tanaka S, and Sugai S 1987 Phys. Rev. B 35 696
[38] Namatame H, Fujimori A, Takagi H, Uchida S, de Groot F M, and Fuggle J C 1993 Phys. Rev. B 48 16917
[39] Yasukawa M, Shiga Y, and Kono T 2012 Solid State Commun. 152 964
[40] Merz W J 1954 Phys. Rev. 95 690
[41] Nishino R, Fujita T C, Kagawa F, and Kawasaki M 2020 Sci. Rep. 10 10864
[42] Neaton J B, Ederer C, Waghmare U V, Spaldin N A, and Rabe K M 2005 Phys. Rev. B 71 014113
[43] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[44] Henkelman G, Uberuaga B P, and Jónsson H 2000 J. Chem. Phys. 113 9901
[45] Ravindran P, Vidya R, Kjekshus A, Fjellvåg H, and Eriksson O 2006 Phys. Rev. B 74 224412
[46] Huang H Y, Wu M, and Qiao L J 2014 Comput. Mater. Sci. 82 1
[47] Song S, Jang H M, Lee N S, Son J Y, Gupta R, Garg A, Ratanapreechachai J, and Scott J F 2016 NPG Asia Mater. 8 e242
[48] Li S T and Birol T 2020 npj Comput. Mater. 6 168
[49] Acosta C M, Fazzio A, Dalpian G M, and Zunger A 2020 Phys. Rev. B 102 144106
[50] Woodward P M, Cox D E, Moshopoulou E, Sleight A W, and Morimoto S 2000 Phys. Rev. B 62 844
[51] Varignon J, Grisolia M N, Iniguez J, Barthelemy A, and Bibes M 2017 npj Quantum Mater. 2 21
[52] van den Brink J and Khomskii D I 2008 J. Phys.: Condens. Matter 20 434217
Related articles from Frontiers Journals
[1] Yang-Jun Ou, Jie Sun, Yi-Ming Li, and An-Quan Jiang. A Ferroelectric Domain-Wall Transistor[J]. Chin. Phys. Lett., 2023, 40(3): 097701
[2] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 097701
[3] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 097701
[4] Qiong Wu , Xin Wu , Yue-Shun Zhao , and Shifeng Zhao. Design of Lead-Free Films with High Energy Storage Performance via Inserting a Single Perovskite into Bi$_{4}$Ti$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2020, 37(11): 097701
[5] Hui-Zhen Guo, An-Quan Jiang. Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties[J]. Chin. Phys. Lett., 2018, 35(2): 097701
[6] ZHANG Wei, WU Shu-Ya, LI Lei, CHEN Xiang-Ming . Ferroelectricity in Pulsed Laser Deposited Ba(Fe1/2Nb1/2)O3 Thin Films[J]. Chin. Phys. Lett., 2013, 30(5): 097701
[7] LAN Chao-Hui**, PENG Yu-Fei LONG Ji-Dong, WANG Qiang, WANG Wen-Dou . Modeling of PZT Ferroelectric Ceramic Depolarization Driven by Shock Stress[J]. Chin. Phys. Lett., 2011, 28(8): 097701
[8] WANG Hong-Tao, ZHOU Tong, HONG Bo, TAO Qian, XU Zhu-An** . Magnetic Properties of Orthorhombic Perovskite Ho1−xLaxMnO3[J]. Chin. Phys. Lett., 2011, 28(2): 097701
[9] HUANG Ning-Xiang, ZHAO Li-Feng, XU Jia-Yang, CHEN Ji-Li, ZHAO Yong,. Effects of Substitution of Sm for Bi in BiFeO3 Thin Films Prepared by the Sol-Gel Method[J]. Chin. Phys. Lett., 2010, 27(2): 097701
[10] ZHENG Chao-Dan, , ZHANG Duan-Ming, LIU Xin-Ming, YANG Bin, LIU Chao-Jun, YU Jun. Effects of Depolarization Field and Interfacial Coupling on the Polarization of Ferroelectric Bilayers[J]. Chin. Phys. Lett., 2010, 27(1): 097701
[11] WANG Jing, LI Mei-Ya, LIU Xiao-Lian, PEI Ling, LIU Jun, YU Ben-Fang, ZHAO Xing-Zhong,. Synthesis and Multiferroic Properties of BiFeO3 Nanotubes[J]. Chin. Phys. Lett., 2009, 26(11): 097701
[12] LI Jian-Jun, YU Jun, LI Jia, YANG Wei-Ming, ZHOU Bin, GAO Jun-Xiong, WANG Yun-Bo. Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films Crystallized inDifferent N2/O2 Ambients[J]. Chin. Phys. Lett., 2009, 26(4): 097701
[13] LI Jian-Jun, YU Jun, WU Yun-Yi, LI Jia, WANG Yun-Bo, ZHOU Wen-Li. Effect of Pyrolysis Atmosphere on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Films Prepared by Sol-Gel Method[J]. Chin. Phys. Lett., 2009, 26(3): 097701
[14] WU Yun-Yi, ZHANG Duan-Ming, YU Jun, ZHENG Chao-Dan, WANG Yun-Bo. Effects of LSMO Buffer Layer on Crystalline Orientation and Ferroelectric Properties of Bi2.9Pr0.9Ti3O12 Thin Films Prepared by Radio-Frequency Magnetron Sputtering[J]. Chin. Phys. Lett., 2008, 25(11): 097701
[15] ZHANG Yan-Jun, FEI Jin-Wen, TANG Ting-Ao, JIANG An-Quan. Artificial Modulation of Ferroelectric Thin Films into Antiferroelectric through H+ Implantation for High-Density Charge Storage[J]. Chin. Phys. Lett., 2008, 25(5): 097701
Viewed
Full text


Abstract