Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 077301    DOI: 10.1088/0256-307X/39/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials
Chaofei Liu1 and Jian Wang1,2,3*
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Cite this article:   
Chaofei Liu and Jian Wang 2022 Chin. Phys. Lett. 39 077301
Download: PDF(2882KB)   PDF(mobile)(3792KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Superlattice potentials are theoretically predicted to modify the single-particle electronic structures. The resulting Coulomb-interaction-dominated low-energy physics would generate highly novel many-body phenomena. Here, by in situ tunneling spectroscopy, we show the signatures of superstructure-modulated correlated electron states in epitaxial bilayer graphene (BLG) on 6H-SiC(0001). As the carrier density is locally quasi-‘tuned’ by the superlattice potentials of a $6 \times 6$ interface reconstruction phase, the spectral-weight transfer occurs between the two broad peaks flanking the charge-neutral point. Such a detected non-rigid band shift beyond the single-particle band description implies the existence of correlation effects, probably attributed to the modified interlayer coupling in epitaxial BLG by the $6 \times 6$ reconstruction as in magic-angle BLG by the moiré potentials. Quantitative analysis suggests that the intrinsic interface reconstruction shows a high carrier tunability of $\sim $1/2 filling range, equivalent to the back gating by a voltage of $\sim $70 V in a typical gated BLG/SiO$_{2}$/Si device. The finding in interface-modulated epitaxial BLG with reconstruction phase extends the BLG platform with electron correlations beyond the magic-angle situation, and may stimulate further investigations on correlated states in graphene systems and other van der Waals materials.
Received: 20 April 2022      Editors' Suggestion Published: 18 June 2022
PACS:  73.21.Cd (Superlattices)  
  73.22.Pr (Electronic structure of graphene)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/077301       OR      http://cpl.iphy.ac.cn/Y2022/V39/I7/077301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chaofei Liu and Jian Wang
[1] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[2] Trambly de Laissardière G, Mayou D, and Magaud L 2010 Nano Lett. 10 804
[3] Suárez M E, Correa J D, Vargas P, Pacheco M, and Barticevic Z 2010 Phys. Rev. B 82 121407
[4] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature 556 80
[5] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, and Dean C R 2019 Science 363 1059
[6] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, and Efetov D K 2019 Nature 574 653
[7] Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R, and Young A F 2019 Nat. Phys. 15 1011
[8] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[9] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, and Goldhaber-Gordon D 2019 Science 365 605
[10] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, and Young A 2020 Science 367 900
[11] Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, and Watanabe K 2021 Chin. Phys. Lett. 38 047301
[12] Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2019 Nature 572 101
[13] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T, and Nadj-Perge S 2019 Nat. Phys. 15 1174
[14] Kima K, DaSilvab A, Huangc S, Fallahazada B, Larentisa S, Taniguchid T, Kenji W B J L, MacDonaldb A H, and Tutuca E 2017 Proc. Natl. Acad. Sci. USA 114 3364
[15] Codecido E, Wang Q, Koester R, Che S, Tian H, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, Bockrath M, and Lau C N 2019 Sci. Adv. 5 eaaw9770
[16] Ren Y N, Lu C, Zhang Y, Li S Y, Liu Y W, Yan C, Guo Z H, Liu C C, Yang F, and He L 2020 ACS Nano 14 13081
[17] Bostwick A, Ohta T, Seyller T, Horn K, and Rotenberg E 2007 Nat. Phys. 3 36
[18] Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R, MacDonald A H, and Rotenberg E 2010 Science 328 999
[19] Wang Q, Zhang W, Wang L, He K, Ma X, and Xue Q 2013 J. Phys.: Condens. Matter 25 095002
[20] Hupalo M, Conrad E H, and Tringides M C 2009 Phys. Rev. B 80 041401
[21] Liu C, Wang G, and Wang J 2019 J. Phys.: Condens. Matter 31 285002
[22] Zhang Y, Brar V W, Wang F, Girit C, Yayon Y, Panlasigui M, Zettl A, and Crommie M F 2008 Nat. Phys. 4 627
[23] Brar V W, Zhang Y, Yayon Y, Ohta T, McChesney J L, Bostwick A, Rotenberg E, Horn K, and Crommie M F 2007 Appl. Phys. Lett. 91 122102
[24] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro N A H, and Lanzara A 2007 Nat. Mater. 6 770
[25] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, and First P N 2004 J. Phys. Chem. B 108 19912
[26] McCann E and Fal'ko V I 2006 Phys. Rev. Lett. 96 086805
[27] Owman F and Mårtensson P 1996 J. Vac. Sci. Technol. 14 933
[28] Chen W, Xu H, Liu L, Gao X, Qi D, Peng G, Tan S C, Feng Y, Loh K P, and Wee A T S 2005 Surf. Sci. 596 176
[29] Emtsev K V, Seyller T, Speck F, Ley L, Stojanov P, Riley J D, and Leckey R C G 2007 Mater. Sci. Forum 556 525
[30] Kim E A and Neto A C 2008 Europhys. Lett. 84 57007
[31] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, and LeRoy B J 2012 Nat. Phys. 8 382
[32] Seyller T, Emtsev K V, Speck F, Gao K Y, and Ley L 2006 Appl. Phys. Lett. 88 242103
[33] Kim S, Ihm J, Choi H J, and Son Y W 2008 Phys. Rev. Lett. 100 176802
[34] Ristein J, Mammadov S, and Seyller T 2012 Phys. Rev. Lett. 108 246104
[35] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, and Andrei E Y 2019 Nature 573 91
[36] Rutter G M, Jung S, Klimov N N, Newell D B, Zhitenev N B, and Stroscio J A 2011 Nat. Phys. 7 649
[37] Eskes H, Meinders M B, and Sawatzky G A 1991 Phys. Rev. Lett. 67 1035
[38] Cai P, Ruan W, Peng Y, Ye C, Li X, Hao Z, Zhou X, Lee D H, and Wang Y 2016 Nat. Phys. 12 1047
[39] Marchenko D, Evtushinsky D, Golias E, Varykhalov A, Seyller T, and Rader O 2018 Sci. Adv. 4 eaau0059
[40] Riedl C, Coletti C, Iwasaki T, Zakharov A A, and Starke U 2009 Phys. Rev. Lett. 103 246804
Related articles from Frontiers Journals
[1] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 077301
[2] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, and Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(7): 077301
[3] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 077301
[4] Yu-Hao Shen, Wen-Yi Tong, He Hu, Jun-Ding Zheng, and Chun-Gang Duan. Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer[J]. Chin. Phys. Lett., 2021, 38(3): 077301
[5] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 077301
[6] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 077301
[7] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 077301
[8] Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence[J]. Chin. Phys. Lett., 2017, 34(7): 077301
[9] Solaimani M.. Miniband Formation in GaN/AlN Constant-Total-Effective-Radius Multi-shell Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(11): 077301
[10] HAO Hong-Yue, XIANG Wei, WANG Guo-Wei, XU Ying-Qiang, REN Zheng-Wei, HAN Xi, HE Zhen-Hong, LIAO Yong-Ping, WEI Si-Hang, NIU Zhi-Chuan. Wet Chemical Etching of Antimonide-Based Infrared Materials[J]. Chin. Phys. Lett., 2015, 32(10): 077301
[11] LU Jian-Ya, ZHENG Xin-He, WANG Nai-Ming, CHEN Xi, LI Bao-Ji, LU Shu-Long, YANG Hui. GaNAs/InGaAs Superlattice Solar Cells with High N Content in the Barrier Grown by All Solid-State Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2015, 32(5): 077301
[12] ZHANG Hui-Yun, ZHANG Yu-Ping, GAO Ying, YIN Yi-Heng. Independently Tunable Multichannel Filters Based on Graphene Superlattices with Fractal Potential Patterns[J]. Chin. Phys. Lett., 2012, 29(12): 077301
[13] WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection[J]. Chin. Phys. Lett., 2010, 27(7): 077301
[14] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 077301
[15] LU Shuo, SHANG Jia-Xiang, ZHANG Yue. Influence of Interface Structure of Co/Cu (100) Superlattices on Electronic Structure and Giant Magnetoresistance[J]. Chin. Phys. Lett., 2007, 24(11): 077301
Viewed
Full text


Abstract