Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 057401    DOI: 10.1088/0256-307X/39/5/057401
Effect of Impurity on the Doping-Induced in-Gap States in a Mott Insulator
Cheng-Ping He1, Shun-Li Yu1,2, Tao Xiang3,4,5*, and Jian-Xin Li1,2*
1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
3Institute of Physics, National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
4Department of Physics, University of Chinese Academy of Sciences, Beijing 100190, China
5Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Cite this article:   
Cheng-Ping He, Shun-Li Yu, Tao Xiang et al  2022 Chin. Phys. Lett. 39 057401
Download: PDF(2939KB)   PDF(mobile)(3190KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Motivated by the recent measurements of the spatial distribution of single particle excitation states in a hole-doped Mott insulator, we study the effects of impurity on the in-gap states, induced by the doped holes, in the Hubbard model on the square lattice by the cluster perturbation theory. We find that a repulsive impurity potential can move the in-gap state from the lower Hubbard band towards the upper Hubbard band, providing a good account for the experimental observation. The distribution of the spectral function in the momentum space can be used to discriminate the in-gap state induced by doped holes and that by the impurity. The spatial characters of the in-gap states in the presence of two impurities are also discussed and compared to the experiment.
Received: 05 April 2022      Express Letter Published: 27 April 2022
PACS: (Strongly correlated electron systems: generalized tight-binding method)  
  74.72.Gh (Hole-doped)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Cheng-Ping He
Shun-Li Yu
Tao Xiang
and Jian-Xin Li
[1] Bednorz J G and Müller K A 1986 Z. Phys. B-Condens. Matter 64 189
[2] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[3] Dagotto E 1994 Rev. Mod. Phys. 66 763
[4] Imada M, Fujimori A, and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[5] Ye C, Cai P, Yu R, Zhou X, Ruan W, Liu Q, Jin C, and Wang Y 2013 Nat. Commun. 4 1365
[6] Cai P, Ruan W, Peng Y, Ye C, Li X, Hao Z, Zhou X, Lee D H, and Wang Y 2016 Nat. Phys. 12 1047
[7] Li H, Ye S, Zhao J, Jin C, and Wang Y 2021 Sci. Bull. 66 1395
[8] Sun Z, Guevara J M, Sykora S, Pärschke E M, Manna K, Maljuk A, Wurmehl S, van den Brink J, Büchner B, and Hess C 2021 Phys. Rev. Res. 3 023075
[9] Wang Y, He Y, Wohlfeld K et al. 2020 Commun. Phys. 3 1
[10] Chen Z, Wang Y, Rebec S N, Jia T, Hashimoto M, Lu D, Moritz B, Moore R G, Devereaux T P, and Shen Z X 2021 Science 373 1235
[11] Ronning F, Shen K M, Armitage N P, Damascelli A, Lu D H, Shen Z X, Miller L L, and Kim C 2005 Phys. Rev. B 71 094518
[12] Meevasana W, Zhou X, Sahrakorpi S et al. 2007 Phys. Rev. B 75 174506
[13] Valla T, Kidd T, Yin W G, Gu G, Johnson P, Pan Z H, and Fedorov A 2007 Phys. Rev. Lett. 98 167003
[14] Graf J, Gweon G H, McElroy K et al. 2007 Phys. Rev. Lett. 98 067004
[15] He Y, Hashimoto M, Song D et al. 2018 Science 362 62
[16] Chen S D, Hashimoto M, He Y et al. 2019 Science 366 1099
[17] Hu C, Zhao J, Gao Q et al. 2021 Nat. Commun. 12 1
[18] Gao Q, Zhao L, Hu C et al. 2020 Chin. Phys. Lett. 37 087402
[19] Eskes H, Meinders M B J, and Sawatzky G A 1991 Phys. Rev. Lett. 67 1035
[20] Dagotto E, Ortolani F, and Scalapino D 1992 Phys. Rev. B 46 3183
[21] Preuss R, Hanke W, and von der Linden W 1995 Phys. Rev. Lett. 75 1344
[22] Phillips P, Choy T P, and Leigh R G 2009 Rep. Prog. Phys. 72 036501
[23] Phillips P 2010 Rev. Mod. Phys. 82 1719
[24] Eder R, Seki K, and Ohta Y 2011 Phys. Rev. B 83 205137
[25] Kohno M 2018 Rep. Prog. Phys. 81 042501
[26] Kohno M 2010 Phys. Rev. Lett. 105 106402
[27] Sakai S, Motome Y, and Imada M 2009 Phys. Rev. Lett. 102 056404
[28] Yamaji Y and Imada M 2011 Phys. Rev. Lett. 106 016404
[29] Yamaji Y and Imada M 2011 Phys. Rev. B 83 214522
[30] Kang J, Yu S L, Xiang T, and Li J X 2011 Phys. Rev. B 84 064520
[31] Kohno M 2012 Phys. Rev. Lett. 108 076401
[32] Kohno M 2015 Phys. Rev. B 92 085129
[33] Leong W H, Yu S L, Xiang T, and Li J X 2014 Phys. Rev. B 90 245102
[34] Wu H K and Lee T K 2017 Phys. Rev. B 95 035133
[35] Sénéchal D, Perez D, and Pioro-Ladrière M 2000 Phys. Rev. Lett. 84 522
[36] Sénéchal D, Perez D, and Plouffe D 2002 Phys. Rev. B 66 075129
[37] Pairault S, Sénéchal D, and Tremblay A M S 1998 Phys. Rev. Lett. 80 5389
[38] Zacher M G, Eder R, Arrigoni E, and Hanke W 2000 Phys. Rev. Lett. 85 2585
[39] Sénéchal D and Tremblay A M S 2004 Phys. Rev. Lett. 92 126401
[40] Yu S L, Xie X C, and Li J X 2011 Phys. Rev. Lett. 107 010401
[41] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[42] Potthoff M, Aichhorn M, and Dahnken C 2003 Phys. Rev. Lett. 91 206402
[43] Lieb E H and Wu F Y 1968 Phys. Rev. Lett. 20 1445
[44] Benthien H, Gebhard F, and Jeckelmann E 2004 Phys. Rev. Lett. 92 256401
[45] Suzuura H and Nagaosa N 1997 Phys. Rev. B 56 3548
[46] Xiang T and d'Ambrumenil N 1992 Phys. Rev. B 45 8150
[47] Nocera A, Essler F H L, and Feiguin A E 2018 Phys. Rev. B 97 045146
[48] Kumar U, Nocera A, Price G, Stiwinter K, Johnston S, and Datta T 2020 Phys. Rev. B 102 075134
Related articles from Frontiers Journals
[1] Nguyen Ngoc Hieu, Le Cong Nhan. Electronic Band Structure of Carbon Nanotubes with Kekule Structure[J]. Chin. Phys. Lett., 2013, 30(9): 057401
[2] ZHANG Hai-Yang, DONG Shun-Le. First Principles Study of Single Wall TiO2 Nanotubes Rolled by Anatase Monolayers[J]. Chin. Phys. Lett., 2013, 30(4): 057401
Full text