Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 037303    DOI: 10.1088/0256-307X/39/3/037303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization
Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao*
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
Cite this article:   
Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu et al  2022 Chin. Phys. Lett. 39 037303
Download: PDF(1732KB)   PDF(mobile)(0KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The reversal of perpendicular magnetization (PM) by electric control is crucial for high-density integration of low-power magnetic random-access memory. Although the spin-transfer torque and spin-orbit torque technologies have been used to switch the magnetization of a free layer with perpendicular magnetic anisotropy, the former has limited endurance because of the high current density directly through the junction, while the latter requires an external magnetic field or unconventional configuration to break the symmetry. Here we propose and realize the orbit-transfer torque (OTT), that is, exerting torque on the magnetization using the orbital magnetic moments, and thus demonstrate a new strategy for current-driven PM reversal without external magnetic field. The perpendicular polarization of orbital magnetic moments is generated by a direct current in a few-layer WTe$_{2}$ due to the existence of nonzero Berry curvature dipole, and the polarization direction can be switched by changing the current polarity. Guided by this principle, we construct the WTe$_{2}$/Fe$_{3}$GeTe$_{2}$ heterostructures to achieve the OTT driven field-free deterministic switching of PM.
Received: 11 February 2022      Express Letter Published: 16 February 2022
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
  85.75.Bb (Magnetic memory using giant magnetoresistance)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/037303       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/037303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xing-Guo Ye
Peng-Fei Zhu
Wen-Zheng Xu
Nianze Shang
Kaihui Liu
and Zhi-Min Liao
[1] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, and Ohtani K 2000 Nature 408 944
[2] Myers E B, Ralph D C, Katine J A, Louie R N, and Buhrman R A 1999 Science 285 867
[3] Wegrowe J E, Kelly D, Jaccard Y, Guittienne Ph, and Ansermet Ph J 1999 Europhys. Lett. 45 626
[4] Chappert C, Fert A, and van dau Frédéric N 2007 Nat. Mater. 6 813
[5] Moser A, Takano K, Margulies D T, Albrecht M, Sonobe Y, Ikeda Y, Sun S, and Fullerton E E 2002 J. Phys. D 35 R157
[6] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, and Gambardella P 2011 Nature 476 189
[7] Berger L 1996 Phys. Rev. B 54 9353
[8] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[9] Ralph D C and Stiles M D 2008 J. Magn. Magn. Mater. 320 1190
[10] Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, and Buhrman R A 2012 Appl. Phys. Lett. 101 122404
[11] Chernyshov A, Overby M, Liu X, Furdyna J K, Lyanda-Geller Y, and Rokhinson L P 2009 Nat. Phys. 5 656
[12] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, and Gambardella P 2010 Nat. Mater. 9 230
[13] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, and Buhrman R A 2012 Science 336 555
[14] Liu L, Lee O J, Gudmundsen T J, Ralph D C, and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[15] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G, and Gambardella P 2013 Nat. Nanotechnol. 8 587
[16] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, and Ralph D C 2014 Nature 511 449
[17] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K, and Wang K L 2014 Nat. Nanotechnol. 9 548
[18] Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L T, Montazeri M, Yu G, Jiang W, Nie T, Schwartz R N, Tserkovnyak Y, and Wang K L 2014 Nat. Mater. 13 699
[19] Kurebayashi H, Sinova J, Fang D, Irvine A C, Skinner T D, Wunderlich J, Novák V, Campion R P, Gallagher B L, Vehstedt E K, Zârbo L P, Výborný K, Ferguson A J, and Jungwirth T 2014 Nat. Nanotechnol. 9 211
[20] Fukami S, Anekawa T, Zhang C, and Ohno H 2016 Nat. Nanotechnol. 11 621
[21] Wadley P, Howells B, Železny J et al. 2016 Science 351 587
[22] Fukami S, Zhang C, DuttaGupta S, Kurenkov A, and Ohno H 2016 Nat. Mater. 15 535
[23] Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, and Gambardella P 2019 Rev. Mod. Phys. 91 035004
[24] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, and Ralph D C 2017 Nat. Phys. 13 300
[25] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H, and Wang K 2017 Nat. Mater. 16 712
[26] Baek S C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G, and Lee K J 2018 Nat. Mater. 17 509
[27] Shi S, Liang S, Zhu Z, Cai K, Pollard S D, Wang Y, Wang J, Wang Q, He P, Yu J, Eda G, Liang G, and Yang H 2019 Nat. Nanotechnol. 14 945
[28] Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, and Han X 2019 Sci. Adv. 5 eaaw8904
[29] Chang M C and Niu Q 1996 Phys. Rev. B 53 7010
[30] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806
[31] Lee J, Wang Z, Xie H, Mak K F, and Shan J 2017 Nat. Mater. 16 887
[32] Corciovei A 1963 Phys. Rev. 130 2223
[33] Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Valdivia A M M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, and Jarillo-Herrero P 2019 Nature 565 337
[34] Kang K, Li T, Sohn E, Shan J, and Mak K F 2019 Nat. Mater. 18 324
[35] Qin M S, Zhu P F, Ye X G, Xu W Z, Song Z H, Liang J, Liu K, and Liao Z M 2021 Chin. Phys. Lett. 38 017301
[36] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature 563 94
[37] Brown B E 1966 Acta Crystallogr. 20 268
[38] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, and Cava R J 2014 Nature 514 205
[39] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, and Jarillo-Herrero P 2018 Science 362 926
[40] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A, and Cobden D H 2018 Science 362 922
[41] Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K, and Shen Z X 2017 Nat. Phys. 13 683
[42] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, and Jarillo-Herrero P 2018 Science 359 76
[43] Wang P, Yu G, Jia Y, Onyszczak M, Cevallos F A, Lei S, Klemenz S, Watanabe K, Taniguchi T, Cava R J, Schoop L M, and Wu S 2021 Nature 589 225
[44] You J S, Fang S, Xu S Y, Kaxiras E, and Low T 2018 Phys. Rev. B 98 121109
[45] Son J, Kim K H, Ahn Y H, Lee H W, and Lee J 2019 Phys. Rev. Lett. 123 036806
[46] Shao Y, Lv W, Guo J, Qi B, Lv W, Li S, Guo G, and Zeng Z 2020 Appl. Phys. Lett. 116 092401
[47] Zhao B, Karpiak B, Khokhriakov D, Johansson A, Hoque A M, Xu X, Jiang Y, Mertig I, and Dash S P 2020 Adv. Mater. 32 2000818
[48] Du Z Z, Lu H Z, and Xie X C 2021 Nat. Rev. Phys. 3 744
[49] Zhang Y, van den Brink J, Felser C, and Yan B 2018 2D Mater. 5 044001
[50] Ho S C, Chang C H, Hsieh Y C, Lo S T, Huang B, Vu T H Y, Ortix C, and Chen T M 2021 Nat. Electron. 4 116
[51] Zhang X, Lu Q, Liu W, Niu W, Sun J, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G, and Xu Y 2021 Nat. Commun. 12 2492
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 037303
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 037303
[3] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 037303
[4] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 037303
[5] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 037303
[6] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 037303
[7] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 037303
[8] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 037303
[9] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 037303
[10] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 037303
[11] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 037303
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 037303
[13] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 037303
[14] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 037303
[15] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 037303
Viewed
Full text


Abstract