Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 107501    DOI: 10.1088/0256-307X/39/10/107501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Incommensurate Magnetic Order in Sm$_3$BWO$_9$ with Distorted Kagome Lattice
Kai-Yue Zeng1,2, Fang-Yuan Song3, Lang-Sheng Ling1, Wei Tong1, Shi-Liang Li4,5, Zhao-Ming Tian3*, Long Ma1*, and Li Pi1,2
1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
2Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
3School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
4Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
5School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Kai-Yue Zeng, Fang-Yuan Song, Lang-Sheng Ling et al  2022 Chin. Phys. Lett. 39 107501
Download: PDF(9010KB)   PDF(mobile)(9014KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the magnetic ground state of Sm$_3$BWO$_9$ with a distorted kagome lattice. A magnetic phase transition is identified at $T_{\rm N}=0.75$ K from the temperature dependence of specific heat. From $^{11}$B nuclear magnetic resonance measurements, an incommensurate magnetic order is shown by the double-horn type spectra under a $c$-axis magnetic field, and absence of line splitting is observed for field oriented within the $ab$-plane, indicating the incommensurate modulation of the internal field strictly along $c$-axis. From the spin dynamics, the critical slowing-down behavior is observed in the temperature dependence of $1/T_1$ with $\mu_0H$$\perp$$c$-axis, which is completely absent in the case with $\mu_0H||c$-axis. Based on the local symmetry of $^{11}$B sites, we analyze the hyperfine coupling tensors and propose two constraints on the possible magnetic structure. The single ion anisotropy should play an important role in determination of contrasting ground states of Sm$_3$BWO$_9$ and Pr$_3$BWO$_9$.
Received: 11 July 2022      Editors' Suggestion Published: 09 September 2022
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.40.Gb (Dynamic properties?)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/107501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/107501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai-Yue Zeng
Fang-Yuan Song
Lang-Sheng Ling
Wei Tong
Shi-Liang Li
Zhao-Ming Tian
Long Ma
and Li Pi
[1]Lacroix C, Mendels P, and Mila F 2011 Introduction to Frustrated Magnetism (New York: Springer)
[2] Balents L 2010 Nature 464 199
[3] Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003
[4] Schaffer R, Bhattacharjee S, and Kim Y B 2013 Phys. Rev. B 88 174405
[5] Dun Z L, Trinh J, Li K et al. 2016 Phys. Rev. Lett. 116 157201
[6] Wills A S, Ballou R, and Lacroix C 2002 Phys. Rev. B 66 144407
[7] Picot T and Poilblanc D 2015 Phys. Rev. B 91 064415
[8] Singh R R P and Huse D A 2007 Phys. Rev. B 76 180407(R)
[9] Jiang H C, Weng Z Y, and Sheng D N 2008 Phys. Rev. Lett. 101 117203
[10] Nakano H and Sakai T 2011 J. Phys. Soc. Jpn. 80 053704
[11] Chalker J T, Holdsworth P C W, and Shender E F 1992 Phys. Rev. Lett. 68 855
[12] Reimers J N and Berlinsky A J 1993 Phys. Rev. B 48 9539
[13] Robert J, Canals B, Simonet V, and Ballou R 2008 Phys. Rev. Lett. 101 117207
[14] Ding Z F, Yang Y X, Zhang J, Tan C, Zhu Z H, Chen G, and Shu L 2018 Phys. Rev. B 98 174404
[15] Ma Z, Dong Z Y, Wu S et al. 2020 Phys. Rev. B 102 224415
[16] Ashtar M, Guo J J, Wan Z T, Wang Y Q, Gong G S, Liu Y, Su Y L, and Tian Z M 2020 Inorg. Chem. 59 5368
[17] Zeng K Y, Song F Y, Tian Z M et al. 2021 Phys. Rev. B 104 155150
[18]Slichter C P 1990 Principles of Magnetic Resonance (Berlin: Springer)
[19]Abragam A 1961 The Principles of Nuclear Magnetism (Oxford: Oxford University Press)
[20] Zeng K Y, Ma L, Gao Y X, Tian Z M, Ling L S, and Pi L 2020 Phys. Rev. B 102 045149
[21] Baenitz M, Schlender P, Sichelschmidt J et al. 2018 Phys. Rev. B 98 220409(R)
[22] Bordelon M M, Kenney E, Liu C et al. 2019 Nat. Phys. 15 1058
[23] Zheng J C, Ran K J, Li T R, Wang J H, Wang P S, Liu B, Liu Z X, Normand B, Wen J S, and Yu W 2017 Phys. Rev. Lett. 119 227208
[24] Clogston A M and Jaccarino V 1961 Phys. Rev. 121 1357
[25] Ding Q P, Higa N, Sangeetha N S, Johnston D C, and Furukawa Y 2017 Phys. Rev. B 95 184404
[26] Blinc R and Apih T 2002 Prog. Nucl. Magn. Reson. Spectrosc. 41 49
[27] Moriya T 1963 J. Phys. Soc. Jpn. 18 516
[28] Xu X S, Brinzari T V, McGill S, Zhou H D, Wiebe C R, and Musfeldt J L 2009 Phys. Rev. Lett. 103 267402
[29] Li Y S, Adroja D, Bewley R I, Voneshen D, Tsirlin A A, Gegenwart P, and Zhang Q M 2017 Phys. Rev. Lett. 118 107202
Related articles from Frontiers Journals
[1] Zhi-Xuan Li, Shuai Yin, and Yu-Rong Shu. Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States[J]. Chin. Phys. Lett., 2023, 40(3): 107501
[2] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 107501
[3] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 107501
[4] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 107501
[5] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 107501
[6] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 107501
[7] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 107501
[8] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 107501
[9] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 107501
[10] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 107501
[11] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 107501
[12] DAI Jia, WANG Peng-Shuai, SUN Shan-Shan, PANG Fei, ZHANG Jin-Shan, DONG Xiao-Li, YUE Gen, JIN Kui, CONG Jun-Zhuang, Sun Yang, YU Wei-Qiang. Nuclear-Magnetic-Resonance Properties of the Staircase Kagomé Antiferromagnet $PbCu_3TeO_7$[J]. Chin. Phys. Lett., 2015, 32(12): 107501
[13] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 107501
[14] LI Da-Chuang, LI Xiao-Man, LI Hu, TAO Rui, YANG Ming, CAO Zhuo-Liang. Thermal Entanglement in the Pure Dzyaloshinskii–Moriya Model with Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(5): 107501
[15] YANG Ge, CHEN Bin. Villain Transformation for Ferrimagnetic Spin Chain[J]. Chin. Phys. Lett., 2014, 31(06): 107501
Viewed
Full text


Abstract