Chin. Phys. Lett.  2021, Vol. 38 Issue (9): 096101    DOI: 10.1088/0256-307X/38/9/096101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Magnetic Order and Its Interplay with Structure Phase Transition in van der Waals Ferromagnet VI$_{3}$
Yiqing Hao1†, Yiqing Gu1,2†, Yimeng Gu1,2, Erxi Feng3, Huibo Cao3, Songxue Chi3, Hua Wu4,1,2, and Jun Zhao1,2,5,6*
1State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
2Shanghai Qi Zhi Institute, Shanghai 200232, China
3Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
4Laboratory for Computational Physical Sciences (MOE), Fudan University, Shanghai 200433, China
5Institute of Nanoelectronics and Quantum Computing, Fudan University, Shanghai 200433, China
6 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Cite this article:   
Yiqing Hao, Yiqing Gu, Yimeng Gu et al  2021 Chin. Phys. Lett. 38 096101
Download: PDF(1534KB)   PDF(mobile)(1641KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Van der Waals magnet VI$_{3}$ demonstrates intriguing magnetic properties that render it great for use in various applications. However, its microscopic magnetic structure has not been determined yet. Here, we report neutron diffraction and susceptibility measurements in VI$_{3}$ that revealed a ferromagnetic order with the moment direction tilted from the $c$-axis by $\sim $$36^{\circ}$ at 4 K. A spin reorientation accompanied by a structure distortion within the honeycomb plane is observed, before the magnetic order completely disappears at $T_{\rm C} = 50$ K. The refined magnetic moment of $\sim $$1.3 \mu_{\scriptscriptstyle {\rm B}}$ at 4 K is much lower than the fully ordered spin moment of $2\mu_{\scriptscriptstyle {\rm B}}$/V$^{3+}$, suggesting the presence of a considerable orbital moment antiparallel to the spin moment and strong spin–orbit coupling in VI$_{3}$. This results in strong magnetoelastic interactions that make the magnetic properties of VI$_{3}$ easily tunable via strain and pressure.
Received: 14 July 2021      Express Letter Published: 16 August 2021
PACS:  61.05.F- (Neutron diffraction and scattering)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  75.25.+z  
  75.30.Gw (Magnetic anisotropy)  
Fund: Supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2017–01-07-00-07-E00018), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the National Natural Science Foundation of China (Grant No. 11874119). E.F. and H.C. acknowledge the support of U.S. DOE BES Early Career Award No. KC0402020 under Contract No. DE-AC05-00OR22725.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/9/096101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I9/096101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yiqing Hao
Yiqing Gu
Yimeng Gu
Erxi Feng
Huibo Cao
Songxue Chi
Hua Wu
and Jun Zhao
[1] Burch K S, Mandrus D, and Park J G 2018 Nature 563 47
[2] Huang B et al. 2017 Nature 546 270
[3] Gong C et al. 2017 Nature 546 265
[4] Deng Y et al. 2018 Nature 563 94
[5] Zhong D et al. 2017 Sci. Adv. 3 e1603113
[6] Huang B et al. 2018 Nat. Nanotechnol. 13 544
[7] Jiang S, Shan J, and Mak K F 2018 Nat. Mater. 17 406
[8] Jiang S, Li L, Wang Z, Mak K F, and Shan J 2018 Nat. Nanotechnol. 13 549
[9] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, and Gao C 2019 Science 366 983
[10] Li T et al. 2019 Nat. Mater. 18 1303
[11] Song T et al. 2019 Nat. Mater. 18 1298
[12] Sun Z et al. 2019 Nature 572 497
[13] Liu L, Yang K, Wang G, and Wu H 2020 J. Mater. Chem. C 8 14782
[14] Guo Y, Liu N, Zhao Y, Jiang X, Zhou S, and Zhao J 2020 Chin. Phys. Lett. 37 107506
[15] Mak K F, Shan J, and Ralph D C 2019 Nat. Rev. Phys. 1 646
[16] Gibertini M, Koperski M, Morpurgo A F, and Novoselov K S 2019 Nat. Nanotechnol. 14 408
[17] Gong C and Zhang X 2019 Science 363 eaav4450
[18] Zhang W, Wong P K J, Zhu R, and Wee A T S 2019 InfoMat 1 479
[19] Huang B, McGuire M A, May A F, Xiao D, Jarillo-Herrero P, and Xu X 2020 Nat. Mater. 19 1276
[20] Ningrum V P et al. 2020 Research 2020 1768918
[21] Yang S, Zhang T, and Jiang C 2021 Adv. Sci. 8 2002488
[22] Tian S, Zhang J F, Li C, Ying T, Li S, Zhang X, Liu K, and Lei H 2019 J. Am. Chem. Soc. 141 5326
[23] Kong T, Stolze K, Timmons E I, Tao J, Ni D R, Guo S, Yang Z, Prozorov R, and Cava R J 2019 Adv. Mater. 31 1808074
[24] Son S et al. 2019 Phys. Rev. B 99 041402
[25] Doležal P et al. 2019 Phys. Rev. Mater. 3 121401
[26] Marchandier T, Dubouis N, Fauth F, Avdeev M, Grimaud A, Tarascon J M, and Rousse G 2021 Phys. Rev. B 104 014105
[27] Gati E, Inagaki Y, Kong T, Cava R J, Furukawa Y, Canfield P C, and Bud'ko S L 2019 Phys. Rev. B 100 094408
[28] Yan J et al. 2019 Phys. Rev. B 100 094402
[29] Koriki A et al. 2021 Phys. Rev. B 103 174401
[30] Liu Y, Abeykoon M, and Petrovic C 2020 Phys. Rev. Res. 2 013013
[31] Valenta J et al. 2021 Phys. Rev. B 103 054424
[32] Yang K, Fan F, Wang H, Khomskii D I, and Wu H 2020 Phys. Rev. B 101 100402(R)
[33] Zhao G D, Liu X, Hu T, Jia F, Cui Y, Wu W, Whangbo M H, and Ren W 2021 Phys. Rev. B 103 014438
[34] Sandratskii L M and Carva K 2021 Phys. Rev. B 103 214451
[35] Zhou Z, Pandey S K, and Feng J 2021 Phys. Rev. B 103 035137
[36] McGuire M A, Dixit H, Cooper V R, and Sales B C 2015 Chem. Mater. 27 612
[37] Chen L, Chung J H, Gao B, Chen T, Stone M B, Kolesnikov A I, Huang Q, and Dai P 2018 Phys. Rev. X 8 041028
[38] Huang C, Wu F, Yu S, Jena P, and Kan E 2020 Phys. Chem. Chem. Phys. 22 512
[39] Broadway D A et al. 2020 Adv. Mater. 32 2003314
[40] Lyu B et al. 2020 Nano Lett. 20 6024
Viewed
Full text


Abstract