Chin. Phys. Lett.  2021, Vol. 38 Issue (9): 094202    DOI: 10.1088/0256-307X/38/9/094202
Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory
Keyu Su1†, Yunfei Wang1†*, Shanchao Zhang1,2,†, Zhuoping Kong1, Yi Zhong1, Jianfeng Li1, Hui Yan1,2,3*, and Shi-Liang Zhu1,2*
1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
3Guangdong Provincial Engineering Technology Research Center for Quantum Precision Measurement, South China Normal University, Guangzhou 510006, China
Cite this article:   
Keyu Su, Yunfei Wang, Shanchao Zhang et al  2021 Chin. Phys. Lett. 38 094202
Download: PDF(1171KB)   PDF(mobile)(1244KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Time synchronization and phase shaping of single photons both play fundamental roles in quantum information applications that rely on multi-photon quantum interference. Phase shaping typically requires separate modulators with extra insertion losses. Here, we develop an all-optical built-in phase modulator for single photons using a quantum memory. The fast phase modulation of a single photon in both step and linear manner are verified by observing the efficient quantum-memory-assisted Hong–Ou–Mandel interference between two single photons, where the anti-coalescence effect of bosonic photon pairs is demonstrated. The developed phase modulator may push forward the practical quantum information applications.
Received: 22 July 2021      Express Letter Published: 02 September 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  32.80.-t (Photoionization and excitation)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309500), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B030330001), the Key Project of Science and Technology of Guangzhou (Grant No. 2019050001), and the National Natural Science Foundation of China (Grant Nos. 11822403, 62005082, 12004120, U20A2074, and U1801661), the Natural Science Foundation of Guangdong Province (Grant No. 2018A0303130066), the China Postdoctoral Science Foundation (Grant No. 2020M672681), and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515110848).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Keyu Su
Yunfei Wang
Shanchao Zhang
Zhuoping Kong
Yi Zhong
Jianfeng Li
Hui Yan
and Shi-Liang Zhu
[1] Hong C K, Ou Z Y, and Mandel L 1987 Phys. Rev. Lett. 59 2044
[2] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, and Milburn G J 2007 Rev. Mod. Phys. 79 135
[3] Duan L M, Lukin M D, Cirac J I, and Zoller P 2001 Nature 414 413
[4] Sangouard N, Simon C, de Riedmatten H, and Gisin N 2011 Rev. Mod. Phys. 83 33
[5] Kimble H J 2008 Nature 453 1023
[6] Wehner S, Elkouss D, and Hanson R 2018 Science 362 eaam9288
[7] Bhaskar M K, Riedinger R, Machielse B, Levonian D S, Nguyen C T, Knall E N, Park H, Englund D, Lončar M, Sukachev D D, and Lukin M D 2020 Nature 580 60
[8] Inoue K, Waks E, and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
[9] Marcikic I, de Riedmatten H, Tittel W, Zbinden H, Legré M, and Gisin N 2004 Phys. Rev. Lett. 93 180502
[10] Raymer M G and Walmsley I A 2020 Phys. Scr. 95 064002
[11] Specht H P, Bochmann J, Mücke M, Weber B, Figueroa E, Moehring D L, and Rempe G 2009 Nat. Photon. 3 469
[12] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, and Żukowski M 2012 Rev. Mod. Phys. 84 777
[13] Qian P, Gu Z, Cao R, Wen R, Ou Z Y, Chen J F, and Zhang W 2016 Phys. Rev. Lett. 117 013602
[14] Liu S, Lai X, Yang C, and Chen J F 2021 Chin. Phys. Lett. 38 084201
[15] Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, and Tittel W 2013 J. Mod. Opt. 60 1519
[16] Nunn J, Langford N K, Kolthammer W S, Champion T F M, Sprague M R, Michelberger P S, Jin X M, England D G, and Walmsley I A 2013 Phys. Rev. Lett. 110 133601
[17] Kaneda F, Xu F, Chapman J, and Kwiat P G 2017 Optica 4 1034
[18] Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, and Pan J W 2019 Nat. Photon. 13 210
[19] Boller K J, Imamoğlu A, and Harris S E 1991 Phys. Rev. Lett. 66 2593
[20] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, and Chen Y C 2018 Phys. Rev. Lett. 120 183602
[21] Vernaz-Gris P, Huang K, Cao M, Sheremet A S, and Laurat J 2018 Nat. Commun. 9 363
[22] Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, and Zhu S L 2019 Nat. Photon. 13 346
[23] Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, and Walmsley I A 2010 Nat. Photon. 4 218
[24] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, and Guo G C 2015 Nat. Photon. 9 332
[25] Guo J, Feng X, Yang P, Yu Z, Chen L Q, Yuan C H, and Zhang W 2019 Nat. Commun. 10 148
[26] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[27] Patnaik A K, Kien F L, and Hakuta K 2004 Phys. Rev. A 69 035803
[28] Chen B, Qiu C, Chen S, Guo J, Chen L Q, Ou Z Y, and Zhang W 2015 Phys. Rev. Lett. 115 043602
[29] Qiu C, Chen S, Chen L Q, Chen B, Guo J, Ou Z Y, and Zhang W 2016 Optica 3 775
[30] Guo X, Mei Y, and Du S 2018 Phys. Rev. A 97 063805
[31] Mair A, Hager J, Phillips D F, Walsworth R L, and Lukin M D 2002 Phys. Rev. A 65 031802
[32] Lukin M D 2003 Rev. Mod. Phys. 75 457
[33] Jeong T, Park J, and Moon H S 2017 Sci. Rep. 7 15559
[34] Li J F, Wang Y F, Su K Y, Liao K Y, Zhang S C, Yan H, and Zhu S L 2019 Chin. Phys. Lett. 36 074202
[35] Legero T, Wilk T, Hennrich M, Rempe G, and Kuhn A 2004 Phys. Rev. Lett. 93 070503
[36] Yan H, Zhu S L, and Du S W 2011 Chin. Phys. Lett. 28 070307
[37] Knill E, Laflamme R, and Milburn G J 2001 Nature 409 46
Full text