CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors |
Yongqing Cai1,2†, Tao Xie1†, Huan Yang1,2†, Dingsong Wu1,2, Jianwei Huang1,2, Wenshan Hong1,2, Lu Cao1,2, Chang Liu1,2, Cong Li1,2, Yu Xu1,2, Qiang Gao1,2, Taimin Miao1,2, Guodong Liu1,2,3, Shiliang Li1,2,3, Li Huang1, Huiqian Luo1,2,3, Zuyan Xu4, Hongjun Gao1,2,3,5, Lin Zhao1,2,3*, and X. J. Zhou1,2,3,6* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China 5CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 6Beijing Academy of Quantum Information Sciences, Beijing 100193, China
|
|
Cite this article: |
Yongqing Cai, Tao Xie, Huan Yang et al 2021 Chin. Phys. Lett. 38 057404 |
|
|
Abstract High resolution angle-resolved photoemission spectroscopy (ARPES) measurements are carried out on CaKFe$_4$As$_4$, KCa$_2$Fe$_4$As$_4$F$_2$ and (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$ superconductors. Clear evidence of band folding between the Brillouin zone center and corners with a ($\pi$,$\pi$) wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors. A dominant $\sqrt{2} \times \sqrt{2}$ surface reconstruction is observed on the cleaved surface of CaKFe$_4$As$_4$ by scanning tunneling microscopy (STM) measurements. We propose that the commonly observed $\sqrt{2} \times \sqrt{2}$ reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the ($\pi$,$\pi$) band folding. Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.
|
|
Received: 12 April 2021
Published: 02 May 2021
|
|
PACS: |
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300300, 2017YFA0302900, 2018YFA0704200 and 2019YFA0308000), the National Natural Science Foundation of China (Grant Nos. 11888101, 11922414 and 11874405), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000), the Youth Innovation Promotion Association of CAS (Grant No. 2017013), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G06). |
|
|
[1] | de Cruz C L, Huang Q, Lynn J W, Li J Y, Ratcliff W, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, and Dai P C 2008 Nature 453 899 |
[2] | Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, and Chen X H 2008 Phys. Rev. Lett. 101 257003 |
[3] | Li S L, de Cruz C L, Huang Q, Chen G F, Xia T L, Luo J L, Wang N L, and Dai P C 2009 Phys. Rev. B 80 020504 |
[4] | Dai P C, Hu J P, and Dagotto E 2012 Nat. Phys. 8 709 |
[5] | Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q, and Chen X H 2009 Europhys. Lett. 85 17006 |
[6] | Dai P C 2015 Rev. Mod. Phys. 87 855 |
[7] | Fernandes R M, Chubukov A V, and Schmalian J 2014 Nat. Phys. 10 97 |
[8] | Bohmer A E, Hardy F, Wang L, Wolf T, Schweiss P, and Meingast C 2015 Nat. Commun. 6 7911 |
[9] | Mazin I I, Singh D J, Johannes M D, and Du M H 2008 Phys. Rev. Lett. 101 057003 |
[10] | Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, and Aoki H 2008 Phys. Rev. Lett. 101 087004 |
[11] | Shimojima T, Malaeb W, Nakamura A, Kondo T, Kihou K, Lee C, Iyo A, Eisaki H, Ishida S, Nakajima M, Uchida S, Ohgushi K, Ishizaka K, and Shin S 2017 Sci. Adv. 3 e1700466 |
[12] | Cai Y Q, Huang J W, Miao T M, Wu D S, Gao Q, Li C, Xu Y, Jia J J, Wang Q Y, Huang Y, Liu G D, Zhang F F, Zhang S J, Yang F, Wang Z M, Peng Q J, Xu Z Y, Zhao L, and Zhou X J 2021 arXiv:2104.01407 [cond-mat.supr-con] |
[13] | Xie T, Wei Y, Gong D, Fennell T, Stuhr U, Kajimoto R, Ikeuchi K, Li S, Hu J, and Luo H 2018 Phys. Rev. Lett. 120 267003 |
[14] | Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S, and Luo H 2020 Phys. Rev. Lett. 125 117002 |
[15] | Huang J W, Zhao L, Li C, Gao Q, Liu J, Hu Y, Xu Y, Cai Y Q, Wu D S, Ding Y, Hu C, Zhou H X, Dong X L, Liu G D, Wang Q Y, Zhang S J, Wang Z M, Zhang F F, Yang F, Peng Q J, Xu Z Y, Chen C T, and Zhou X J 2019 Sci. Bull. 64 11 |
[16] | Wu D, Hong W, Dong C, Wu X, Sui Q, Huang J, Gao Q, Li C, Song C, Luo H, Yin C, Xu Y, Luo X, Cai Y, Jia J, Wang Q, Huang Y, Liu G, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Xu Z, Qiu X, Li S, Luo H, Hu J, Zhao L, and Zhou X 2020 Phys. Rev. B 101 224508 |
[17] | Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z, and Zhou X 2008 Rev. Sci. Instrum. 79 023105 |
[18] | Zhou X, He S, Liu G, Zhao L, Yu L, and Zhang W 2018 Rep. Prog. Phys. 81 062101 |
[19] | Zhao L, Liu H Y, Zhang W T, Meng J Q, Jia X W, Liu G D, Dong X L, Chen G F, Luo J L, Wang N L, Lu W, Wang G L, Zhou Y, Zhu Y, Wang X Y, Xu Z Y, Chen C T, and Zhou X J 2008 Chin. Phys. Lett. 25 4402 |
[20] | Zabolotnyy V B, Inosov D S, Evtushinsky D V, Koitzsch A, Kordyuk A A, Sun G L, Park J T, Haug D, Hinkov V, Boris A V, Lin C T, Knupfer M, Yaresko A N, Buchner B, Varykhalov A, Follath R, and Borisenko S V 2009 Nature 457 569 |
[21] | Wray L, Qian D, Hsieh D, Xia Y, Li L, Checkelsky J G, Pasupathy A, Gomes K K, Parker C V, Fedorov A V, Chen G F, Luo J L, Yazdani A, Ong N P, Wang N L, and Hasan M Z 2008 Phys. Rev. B 78 184508 |
[22] | Mou D, Kong T, Meier W R, Lochner F, Wang L L, Lin Q, Wu Y, Bud'ko S L, Eremin I, Johnson D D, Canfield P C, and Kaminski A 2016 Phys. Rev. Lett. 117 277001 |
[23] | Yang L X, Zhang Y, Ou H W, Zhao J F, Shen D W, Zhou B, Wei J, Chen F, Xu M, He C, Chen Y, Wang Z D, Wang X F, Wu T, Wu G, Chen X H, Arita M, Shimada K, Taniguchi M, Lu Z Y, Xiang T, and Feng D L 2009 Phys. Rev. Lett. 102 107002 |
[24] | Liu G, Liu H, Zhao L, Zhang W, Jia X, Meng J, Dong X, Zhang J, Chen G, Wang G, Zhou Y, Zhu Y, Wang X, Xu Z, Chen C, and Zhou X 2009 Phys. Rev. B 80 134519 |
[25] | Yi M, Lu D H, Analytis J G, Chu J H, Mo S K, He R H, Hashimoto M, Moore R G, Mazin I I, Singh D J, Hussain Z, Fisher I R, and Shen Z X 2009 Phys. Rev. B 80 174510 |
[26] | Kondo T, Fernandes R M, Khasanov R, Liu C, Palczewski A D, Ni N, Shi M, Bostwick A, Rotenberg E, Schmalian J, Bud'ko S L, Canfield P C, and Kaminski A 2010 Phys. Rev. B 81 060507 |
[27] | Meier W R, Kong T, Kaluarachchi U S, Taufour V, Jo N H, Drachuck G, Böhmer A E, Saunders S M, Sapkota A, Kreyssig A, Tanatar M A, Prozorov R, Goldman A I, Balakirev F F, Gurevich A, Bud'ko S L, and Canfield P C 2016 Phys. Rev. B 94 064501 |
[28] | Wang T, Chu J N, Feng J X, Wang L L, Xu X G, Li W, Wen H H, Liu X S, and Mu G 2020 Sci. Chin. Phys. Mech. & Astron. 63 297412 |
[29] | Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L, and Luo J L 2008 Phys. Rev. B 78 224512 |
[30] | Cao L, Song Y, Liu Y B, Zheng Q, Han G Y, Liu W Y, Li M, Chen H, Xing Y Q, Cao G H, Ding H, Lin X, Du S X, Zhang Y Y, Li G, Wang Z Q, and Gao H J 2021 Nano Res. (in press) |
[31] | Li A, Yin J X, Wang J H, Wu Z, Ma J H, Sefat A S, Sales B C, Mandrus D G, McGuire M A, Jin R Y, Zhang C L, Dai P C, Lv B, Chu C W, Liang X J, Hor P H, Ting C S, and Pan S H 2019 Phys. Rev. B 99 134520 |
[32] | Duan W, Chen K L, Hong W S, Chen X Y, Yang H, Li S L, Luo H Q, and Wen H H 2021 arXiv:2102.08785 [cond-mat.supr-con] |
[33] | Nascimento V B, Li A, Jayasundara D R, Xuan Y, O'Neal J, Pan S, Chien T Y, Hu B, He X B, Li G, Sefat A S, McGuire M A, Sales B C, Mandrus D, Pan M H, Zhang J, Jin R, and Plummer E W 2009 Phys. Rev. Lett. 103 076104 |
[34] | Massee F, de Jong S, Huang Y, Kaas J, van Heumen E, Goedkoop J B, and Golden M S 2009 Phys. Rev. B 80 140507 |
[35] | Niestemski F C, Nascimento V B, Hu B, Plummer W, Gillett J, Sebastian S, Wang Z Q, and Madhavan V 2009 arXiv:0906.2761 [cond-mat.supr-con] |
[36] | Zhang H, Dai J, Zhang Y J, Qu D R, Ji H W, Wu G, Wang X F, Chen X H, Wang B, Zeng C G, Yang J L, and Hou J G 2010 Phys. Rev. B 81 104520 |
[37] | Nishizaki T, Nakajima Y, Tamegai T, and Kobayashi N 2011 J. Phys. Soc. Jpn. 80 014710 |
[38] | Fang D L, Shi X, Du Z Y, Richard P, Yang H, Wu X X, Zhang P, Qian T, Ding X X, Wang Z Y, Kim T K, Hoesch M, Wang A F, Chen X H, Hu J P, Ding H, and Wen H H 2015 Phys. Rev. B 92 144513 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|