Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 057401    DOI: 10.1088/0256-307X/38/5/057401
Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes
Shaobo Liu1,2, Sheng Ma1,2, Zhaosheng Wang3, Wei Hu1,2, Zian Li1, Qimei Liang3, Hong Wang1,2, Yuhang Zhang1,2, Zouyouwei Lu1,2, Jie Yuan1,4,5, Kui Jin1,2,4,5, Jian-Qi Li1,2, Li Pi3, Li Yu1,2,5, Fang Zhou1,2,5*, Xiaoli Dong1,2,4,5, and Zhongxian Zhao1,2,4,5
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
4Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
5Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Shaobo Liu, Sheng Ma, Zhaosheng Wang et al  2021 Chin. Phys. Lett. 38 057401
Download: PDF(1134KB)   PDF(mobile)(1232KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic and superconducting properties of Fe$_{1-\delta}$Se single-crystal flakes grown hydrothermally are studied by the transport measurements under zero and high magnetic fields up to 38.5 T. The results contrast sharply with those previously reported for nematically ordered FeSe by chemical-vapor-transport (CVT) growth. No signature of the electronic nematicity, but an evident metal-to-nonmetal crossover with increasing temperature, is detected in the normal state of the present hydrothermal samples. Interestingly, a higher superconducting critical temperature $T_{\rm c}$ of 13.2 K is observed compared to a suppressed $T_{\rm c}$ of 9 K in the presence of the nematicity in the CVT FeSe. Moreover, the upper critical field in the zero-temperature limit is found to be isotropic with respect to the field direction and to reach a higher value of $\sim $42 T, which breaks the Pauli limit by a factor of 1.8.
Received: 22 March 2021      Published: 21 April 2021
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.25.F- (Transport properties)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300300 and 2017YFA0303003), the National Natural Science Foundation of China (Grant Nos. 12061131005, 11834016 and 11888101), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000), and the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-SLH001).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Shaobo Liu
Sheng Ma
Zhaosheng Wang
Wei Hu
Zian Li
Qimei Liang
Hong Wang
Yuhang Zhang
Zouyouwei Lu
Jie Yuan
Kui Jin
Jian-Qi Li
Li Pi
Li Yu
Fang Zhou
Xiaoli Dong
and Zhongxian Zhao
[1] Zhao J, Huang Q, de la C C, Li S L, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L, and Dai P C 2008 Nat. Mater. 7 953
[2] Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H, and Matsuda Y 2012 Nature 486 382
[3] Coldea A I and Watson M D 2018 Annu. Rev. Condens. Matter Phys. 9 125
[4] Böhmer A E and Kreisel A 2018 J. Phys.: Condens. Matter 30 023001
[5] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[6] Liu S B, Yuan J, Huh S, Ryu H, Ma M W, Hu W, Li D, Ma S, Ni S L, Shen P P, Jin K, Yu L, Kim C Y, Zhou F, Dong X L, and Zhao Z X 2020 arXiv:2009.13286 [cond-mat.supr-con]
[7] Huynh K K, Tanabe Y, Urata T, Oguro H, Heguri S, Watanabe K, and Tanigaki K 2014 Phys. Rev. B 90 144516
[8] Watson M D, Yamashita T, Kasahara S, Knafo W, Nardone M, Beard J, Hardy F, McCollam A, Narayanan A, Blake S F, Wolf T, Haghighirad A A, Meingast C, Schofield A J, Lohneysen H, Matsuda Y, Coldea A I, and Shibauchi T 2015 Phys. Rev. Lett. 115 027006
[9] Rößler S, Koz C, Jiao L, Rößler U K, Steglich F, Schwarz U, and Wirth S 2015 Phys. Rev. B 92 060505(R)
[10] Ni S L, Sun J P, Liu S B, Yuan J, Yu L, Ma M W, Zhang L, Pi L, Zheng P, Shen P P, Li D, Shi D E, Li G B, Sun J L, Zhang G M, Jin K, Cheng J G, Zhou F, Dong X L, and Zhao Z X 2019 arXiv:1912.12614 [cond-mat.supr-con]
[11] Terashima T, Kikugawa N, Kiswandhi A, Choi E S, Brooks J S, Kasahara S, Watashige T, Ikeda H, Shibauchi T, Matsuda Y, Wolf T, Böhmer A E, Hardy F, Meingast C, Löhneysen H V, Suzuki M T, Arita R, and Uji S 2014 Phys. Rev. B 90 144517
[12] Audouard A, Duc F, Drigo L, Toulemonde P, Karlsson S, Strobel P, and Sulpice A 2015 Europhys. Lett. 109 27003
[13] Farrar L S, Bristow M, Haghighirad A A, McCollam A, Bending S J, and Coldea A I 2020 npj Quantum Mater. 5 29
[14] Ok J M, Kwon C I, Kohama Y, You J S, Park S K, Kim J H, Jo Y J, Choi E S, Kindo K, Kang W, Kim K S, Moon E G, Gurevich A, and Kim J S 2020 Phys. Rev. B 101 224509
[15] Zhou N, Sun Y, Xi C Y, Wang Z S, Zhang Y F, Xu C Q, Pan Y Q, Feng J J, Meng Y, Yi X L, Pi L, Tamegai T, Xing X Z, and Shi Z X 2021 arXiv:2102.02353 [cond-mat.supr-con]
[16] Ma Y W 2012 Supercond. Sci. Technol. 25 113001
[17] Huang Y L, Feng Z P, Ni S L, Li J, Hu W, Liu S B, Mao Y Y, Zhou H X, Zhou F, Jin K, Wang H B, Yuan J, Dong X L, and Zhao Z X 2017 Chin. Phys. Lett. 34 077404
[18] Huang Y L, Feng Z P, Yuan J, Hu W, Li J, Ni S L, Liu S B, Mao Y Y, Zhou H X, Wang H B, Zhou F, Zhang G M, Jin K, Dong X L, and Zhao Z X 2017 arXiv:1711.02920 [cond-mat.supr-con]
[19] Koz C, Schmidt M, Borrmann H, Burkhardt U, Rö L S, Carrillo-Cabrera W, Schnelle W, Schwarz U, and Grin Y 2014 Z. Anorg. Allg. Chem. 640 1600
[20] Imai Y, Sawada Y, Nabeshima F, Asami D, Kawai M, and Maeda A 2017 Sci. Rep. 7 46653
[21] Feng Z P, Yuan J, Li J, Wu X X, Hu W, Shen B, Qin M Y, Zhao L, Zhu B Y, Stanev V, Liu M, Zhang G M, Yang H X, Li J Q, Dong X L, Zhou F, Zhou X J, Kusmartsev F V, Hu J P, Takeuchi I, Zhao Z X, and Jin K 2018 arXiv:1807.01273 [cond-mat.supr-con]
[22] Lei H C, Hu R W, Choi E S, Warren J B, and Petrovic C 2010 Phys. Rev. B 81 094518
[23] Lei H C, Hu R W, Choi E S, Warren J B, and Petrovic C 2010 Phys. Rev. B 81 184522
[24] Yuan D N, Huang Y L, Ni S L, Zhou H, Mao Y Y, Hu W, Yuan J, Jin K, Zhang G M, Dong X L, and Zhou F 2016 Chin. Phys. B 25 077404
[25] Wang Z S, Luo H Q, Ren C, and Wen H H 2008 Phys. Rev. B 78 140501(R)
[26] Bukowski Z, Weyeneth S, Puzniak R, Moll P, Katrych S, Zhigadlo N D, Karpinski J, Keller H, and Batlogg B 2009 Phys. Rev. B 79 104521
[27] Wang Z S, Xie T, Kampert E, Förster T, Lu X Y, Zhang R, Gong D L, Li S L, Herrmannsdörfer T, Wosnitza J, and Luo H Q 2015 Phys. Rev. B 92 174509
[28] Werthamer N R, Helfand E, and Hohenberg P C 1966 Phys. Rev. 147 295
[29] Khim S, Kim J W, Choi E S, Bang Y, Nohara M, Takagi H, and Kim K H 2010 Phys. Rev. B 81 184511
[30] Tarantini C, Gurevich A, Jaroszynski J, Balakirev F, Bellingeri E, Pallecchi I, Ferdeghini C, Shen B, Wen H H, and Larbalestier D C 2011 Phys. Rev. B 84 184522
[31] Clogston A M 1962 Phys. Rev. Lett. 9 266
[32] Klemm R A, Luther A, and Beasley M R 1975 Phys. Rev. B 12 877
[33] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L, and Wang N L 2009 Nature 457 565
[34] Fang M H, Yang J H, Balakirev F F, Kohama Y, Singleton J, Qian B, Mao Z Q, Wang H D, and Yuan H Q 2010 Phys. Rev. B 81 020509(R)
Full text