Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 056301    DOI: 10.1088/0256-307X/38/5/056301
Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene
Jing Du1,2†, Bosai Lyu1,2†, Wanfei Shan1,2†, Jiajun Chen1,2, Xianliang Zhou1,2, Jingxu Xie3, Aolin Deng1,2, Cheng Hu1,2, Qi Liang1,2, Guibai Xie4, Xiaojun Li4, Weidong Luo1,2,5*, and Zhiwen Shi1,2*
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
3Institute of Physics, Xi'an Jiaotong University, Xi'an 710049, China
4National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi'an), Xi'an 710100, China
5Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article:   
Jing Du, Bosai Lyu, Wanfei Shan et al  2021 Chin. Phys. Lett. 38 056301
Download: PDF(1938KB)   PDF(mobile)(2633KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Detection of local strain at the nanometer scale with high sensitivity remains challenging. Here we report near-field infrared nano-imaging of local strains in bilayer graphene by probing strain-induced shifts of phonon frequency. As a non-polar crystal, intrinsic bilayer graphene possesses little infrared response at its transverse optical phonon frequency. The reported optical detection of local strain is enabled by applying a vertical electrical field that breaks the symmetry of the two graphene layers and introduces finite electrical dipole moment to graphene phonon. The activated phonon further interacts with continuum electronic transitions, and generates a strong Fano resonance. The resulted Fano resonance features a very sharp near-field infrared scattering peak, which leads to an extraordinary sensitivity of $\sim $0.002% for the strain detection. Our results demonstrate the first nano-scale near-field Fano resonance, provide a new way to probe local strains with high sensitivity in non-polar crystals, and open exciting possibilities for studying strain-induced rich phenomena.
Received: 11 March 2021      Published: 16 April 2021
PACS:  63.20.Kr  
  68.35.Gy (Mechanical properties; surface strains)  
  68.37.Uv (Near-field scanning microscopy and spectroscopy)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302001) and the National Natural Science Foundation of China (Grant Nos. 11774224, 12074244, 11521404, and 61701394). Z.S. acknowledges support from the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and additional support from a Shanghai talent program.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Jing Du
Bosai Lyu
Wanfei Shan
Jiajun Chen
Xianliang Zhou
Jingxu Xie
Aolin Deng
Cheng Hu
Qi Liang
Guibai Xie
Xiaojun Li
Weidong Luo
and Zhiwen Shi
[1] Guinea F, Katsnelson M I, and Geim A K 2010 Nat. Phys. 6 30
[2] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, and Javey A 2014 Nano Lett. 14 4592
[3] Yan W et al. 2013 Nat. Commun. 4 2159
[4] Pereira V M and Neto A H C 2009 Phys. Rev. Lett. 103 046801
[5] Ju L et al. 2015 Nature 520 650
[6] Jiang L et al. 2016 Nat. Mater. 15 840
[7] Lin Y C, Dumcenco D O, Huang Y S, and Suenaga K 2014 Nat. Nanotechnol. 9 391
[8] Ahn G H et al. 2017 Nat. Commun. 8 608
[9] Robinson I and Harder R 2009 Nat. Mater. 8 291
[10] Wang Y D, Tian H, Stoica A D, Wang X L, Liaw P K, and Richardson J W 2003 Nat. Mater. 2 101
[11] Hÿtch M, Houdellier F, Hüe F, and Snoeck E 2008 Nature 453 1086
[12] Hu G et al. 2020 Nature 582 209
[13] Chen M, Lin X, Dinh T H, Zheng Z, Shen J, Ma Q, Chen H, Jarillo-Herrero P, and Dai S 2020 Nat. Mater. 19 1307
[14] Huber A J, Ziegler A, Köck T, and Hillenbrand R 2009 Nat. Nanotechnol. 4 153
[15] Lyu B et al. 2019 Nano Lett. 19 1982
[16] Ni G X et al. 2019 Nat. Commun. 10 4360
[17] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang F 2009 Nature 459 820
[18] Mak K F, Lui C H, Shan J, and Heinz T F 2009 Phys. Rev. Lett. 102 256405
[19] Oostinga J B, Heersche H B, Liu X, Morpurgo A F, and Vandersypen L M K 2008 Nat. Mater. 7 151
[20] Cao Y et al. 2018 Nature 556 80
[21] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[22] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2020 Nature 583 215
[23] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, and Dean C R 2019 Science 363 1059
[24] Choi Y et al. 2019 Nat. Phys. 15 1174
[25] Lu X et al. 2019 Nature 574 653
[26] Yan J, Zhang Y, Kim P, and Pinczuk A 2007 Phys. Rev. Lett. 98 166802
[27] Kuzmenko A B, Benfatto L, Cappelluti E, Crassee I, van der Marel D, Blake P, Novoselov K S, and Geim A K 2009 Phys. Rev. Lett. 103 116804
[28] Tang T T et al. 2010 Nat. Nanotechnol. 5 32
[29] Si C, Liu Z, Duan W, and Liu F 2013 Phys. Rev. Lett. 111 196802
[30] Sunku S S et al. 2018 Science 362 1153
[31] Fano U 1961 Phys. Rev. 124 1866
[32] Fan P, Yu Z, Fan S, and Brongersma M L 2014 Nat. Mater. 13 471
[33] Miroshnichenko A E, Flach S, and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[34] Limonov M, Rykov A, Tajima S, and Yamanaka A 1998 Phys. Rev. Lett. 80 825
[35] Chen H, Liu S, Zi J, and Lin Z 2015 ACS Nano 9 1926
[36] Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, and Soljačić M 2013 Nature 499 188
[37] Sinev I S, Mukhin I S, Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Samusev A K, and Kivshar Y S 2015 Nanoscale 7 11904
[38] Limonov M F, Rybin M V, Poddubny A N, and Kivshar Y S 2017 Nat. Photon. 11 543
[39] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[40] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Togo A and Tanaka I 2015 Scr. Mater. 108 1
Related articles from Frontiers Journals
[1] DOU Xiu-Ming, SUN Bao-Quan, XIONG Yong-Hua, HUANG She-Song, NIHai-Qiao, NIU Zhi-Chuan. Temperature Dependence of Photoluminescence from Single and Ensemble InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2008, 25(9): 056301
[2] ZHOU Ben-Liang, LIAO Wen-Hu, ZHOU Guang-Hui,. Conductance of a Quantum Dot in the Presence of a Phonon Field[J]. Chin. Phys. Lett., 2008, 25(2): 056301
[3] HOU Jun-Hua, LIANG Xi-Xia. Self-Trapping of Acoustic Polaron in One Dimension[J]. Chin. Phys. Lett., 2007, 24(11): 056301
[4] ZHAO Feng-Qi, GONG Jian,. Energy of a Polaron in a Wurtzite Nitride Finite Parabolic Quantum Well[J]. Chin. Phys. Lett., 2007, 24(5): 056301
[5] ZHANG Ji-Ye, LIANG Xi-Xia,. Ground State of a Polaron in a Symmetric Triangular Quantum Well[J]. Chin. Phys. Lett., 2006, 23(8): 056301
[6] HE Xiao-Yong, CAO Jun-Cheng, L{U} Jing-Tao, FENG Song-Lin. Simulation of Confined and Interface Phonons Scattering in Terahertz Quantum Cascade Laser[J]. Chin. Phys. Lett., 2005, 22(12): 056301
[7] REN Qing-Bao, CHEN Qing-Hu. Two-Site Holstein Model: a Variational Wavefunction Analysis[J]. Chin. Phys. Lett., 2005, 22(11): 056301
[8] WANG Zhi-Ping, LIANG Xi-Xia,. Polaron Energy and Effective Mass in Parabolic Quantum Wells[J]. Chin. Phys. Lett., 2005, 22(9): 056301
[9] YU Bing, CAO Jun-Cheng, FENG Song-Lin. Interface Phonon Modes in Quantum Cascade Lasers[J]. Chin. Phys. Lett., 2005, 22(9): 056301
[10] QIU Qing-Chun. Operatorization and Unitary Transformation Approaches to Product Jahn--Teller Problems[J]. Chin. Phys. Lett., 2005, 22(8): 056301
[11] LIU Yong, LI Guang, FENG Shuang-Jiu, LI Xiao-Guang. Jahn-Teller Distortions Cooperating with Magnetic Interaction in the Raman Spectra of La0.75Ca0.25MnO3 Thin Film[J]. Chin. Phys. Lett., 2003, 20(9): 056301
[12] ZHAO Feng-Qi, LIANG Xi-Xia. Polarons with Spatially Dependent Mass in a Finite Parabolic Quantum Well[J]. Chin. Phys. Lett., 2002, 19(7): 056301
[13] CHEN Qing-Hu, WANG Zhuang-Bing, WU Fu-Li, LUO Meng-Bo, YUAN Yong-Hong, JIAO Zheng-Kuan. Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires[J]. Chin. Phys. Lett., 2001, 18(5): 056301
[14] PANG Xiao-feng. Variational Approach to One-Dimensional Electrons Non- Adiabatically Coupled to Phonons[J]. Chin. Phys. Lett., 1999, 16(2): 056301
[15] CHEN Qing-hu, REN Yu-hang, CAO Yi-gang, JIAO Zheng-kuan. Path Integral Approach for Multi-dimensional Polarons in a Symmetric Quantum Dot[J]. Chin. Phys. Lett., 1998, 15(8): 056301
Full text