ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Multiphoton Ionization of Potassium Atoms in Femtosecond Laser Fields |
Wankai Li , Yue Lei , Xing Li , Tao Yang , Mei Du , Ying Jiang , Jialong Li , Sizuo Luo , Aihua Liu , Lanhai He , Pan Ma , Dongdong Zhang*, and Dajun Ding* |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
Cite this article: |
Wankai Li , Yue Lei , Xing Li et al 2021 Chin. Phys. Lett. 38 053202 |
|
|
Abstract We study the multiphoton ionization of potassium atoms in 800 nm and 400 nm femtosecond laser fields. In the 800 nm laser field, the potassium atom absorbs three photons and emits one electron via one photon resonance with the $4p$ intermediate state with the help of the ac-Stark shift. The resonance feature is clearly shown as an Autler–Townes (AT) splitting and is mapped out in the electron kinetic energy spectrum. In a 400 nm laser field, although one photon resonance is possible with the $5p$ state, no splitting is observed. The different transition amplitudes between $4s$–$4p$ and $4s$–$5p$ explain the observed results. Due to the AT effect, an unexpected peak in the photoelectron energy spectrum that violates the dipole transition rule is observed. A preliminary explanation involving the spin-orbit interaction in the $p$ state is given to account for this component. The observed AT-splitting in the electron kinetic energy distribution can be used as an effective method to calibrate the intensity of a laser field.
|
|
Received: 23 February 2021
Published: 02 May 2021
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant Nos. 91850114, 11774131, 12074143, 11704148, 11704147, and 11904120), and the Science Challenge Project (Grant No. TZ2018005). D. Z. acknowledges the finical support of the starting grant from Jilin University. |
|
|
[1] | Mainfray G and Manus G 1991 Rep. Prog. Phys. 54 1333 |
[2] | Joachain C J 2014 Europhys. Lett. 108 44001 |
[3] | Reid K L 2003 Annu. Rev. Phys. Chem. 54 397 |
[4] | Sharma A, Bhale G L, and Razvi M A N 1990 Pramana 35 95 |
[5] | Wollenhaupt M, Krug M, Köhler J, Bayer T, Sarpe-Tudoran C, and Baumert T 2009 Appl. Phys. B 95 647 |
[6] | Hockett P, Wollenhaupt M, Lux C, and Baumert T 2014 Phys. Rev. Lett. 112 223001 |
[7] | Hockett P, Lux C, Wollenhaupt M, and Baumert T 2015 Phys. Rev. A 92 013412 |
[8] | Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D, and Baumert T 2005 J. Mod. Opt. 52 2187 |
[9] | Wollenhaupt M, Engel V, and Baumert T 2005 Annu. Rev. Phys. Chem. 56 25 |
[10] | Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D, and Baumert T 2006 Appl. Phys. B 82 183 |
[11] | Bayer T, Gräfing D, Kerbstadt S, Pengel D, Eickhoff K, Englert L, and Wollenhaupt M 2019 New J. Phys. 21 033001 |
[12] | Kerbstadt S, Eickhoff K, Bayer T, and Wollenhaupt M 2019 Adv. Phys.: X 4 1672583 |
[13] | Pengel D, Kerbstadt S, Englert L, Bayer T, and Wollenhaupt M 2017 Phys. Rev. A 96 043426 |
[14] | Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T, and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003 |
[15] | Liu Y, Hu W, Luo S, Yuan K J, Sun Z, Bandrauk A D, and Ding D 2019 Phys. Rev. A 100 023404 |
[16] | Hu W, Li X, Zhao H, Li W, Lei Y, Kong X, Liu A, Luo S, and Ding D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 084002 |
[17] | Song L, Sun Y, Wang Y, Wang X, He L, Luo S, Hu W, Tong Q, Ding D, and Liu F 2019 Chin. Phys. B 28 063201 |
[18] | Autler S H and Townes C H 1955 Phys. Rev. 100 703 |
[19] | Wollenhaupt M, Krug M, Köhler J, Bayer T, Sarpe-Tudoran C, and Bauert T 2009 Appl. Phys. B 95 245 |
[20] | Nandy D K, Singh Y, Shah B P, and Sahoo B K 2012 Phys. Rev. A 86 052517 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|