ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Strong-Field-Induced N$_{2}^{+}$ Air Lasing in Nitrogen Glow Discharge Plasma |
Nana Dong1†, Yan Zhou1†, Shanbiao Pang1, Xiaodong Huang1, Ke Liu1, Lunhua Deng1*, and Huailiang Xu1,2,3,4* |
1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China 2State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China 3Chongqing Institute of East China Normal University, Chongqing 401120, China 4CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
|
|
Cite this article: |
Nana Dong, Yan Zhou, Shanbiao Pang et al 2021 Chin. Phys. Lett. 38 043301 |
|
|
Abstract We investigate N$_{2}^{+}$ air lasing at 391 nm, induced by strong laser fields in a nitrogen glow discharge plasma. We generate forward N$_{2}^{+}$ air lasing on the $B^{2}\!\varSigma_{\rm u}^{+}(v'=0)$–$X^{2}\!\varSigma_{\rm g}^{+} (v'' =0)$ transition at 391 nm by irradiating an intense 35-fs, 800-nm laser in a pure nitrogen gas, finding that the 391-nm lasing quenches when the nitrogen gas is electrically discharged. In contrast, the 391-nm fluorescence measured from the side of the laser beam is strongly enhanced, demonstrating that this discharge promotes the population in the $B^{2}\!\varSigma_{\rm u}^{+}(v'=0)$ state. By comparing the lasing and fluorescence spectra of the nitrogen gas obtained in the discharged and laser-induced plasma, we show that the quenching of N$_{2}^{+}$ lasing is caused by the efficient suppression of population inversion between the $B^{2}\!\varSigma_{\rm u}^{+}$ and $X^{2}\!\varSigma_{\rm g}^{+}$ states of N$_{2}^{+}$, in which a much higher population occurs in the $X^{2}\!\varSigma_{\rm g}^{+}$ state in the discharge plasma. Our results clarify the important role of population inversion in generating N$_{2}^{+}$ air lasing, and also indicate the potential for the enhancement of N$_{2}^{+}$ lasing via further manipulation of the population in the $X^{2}\!\varSigma_{\rm g}^{+}$ state in the discharged medium.
|
|
Received: 01 January 2021
Published: 06 April 2021
|
|
PACS: |
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
|
Fund: Supported in part by the National Natural Science Foundation of China (Grant Nos. 61625501 and 62027822), and the Open Fund of the State Key Laboratory of High Field Laser Physics (SIOM). |
|
|
[1] | Li R X, Leng Y X and Xu Z Z 2015 Physics 44 509 |
[2] | Xu H L, Cheng Y, Chin S L and Sun H B 2015 Laser & Photon. Rev. 9 275 |
[3] | Wei X Y, Tu Z W, Liu C, Li H L and Xu H L 2016 Chin. Phys. Lett. 33 054201 |
[4] | Chin S L and Xu H L 2016 J. Phys. B 49 222003 |
[5] | Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemuller M and Jiang Y 2020 Chin. Phys. Lett. 37 053201 |
[6] | Sun T, Zhang S W, Wang R, Feng S, Liu Y, Lv H and Xu H F 2020 Chin. Phys. Lett. 37 043301 |
[7] | Luo Q, Liu W and Chin S L 2003 Appl. Phys. B 76 337 |
[8] | Yao J P, Zeng B, Xu H L, Li G H, Chu W, Ni J L, Zhang H S, Chin S L, Cheng Y and Xu Z Z 2011 Phys. Rev. A 84 051802 |
[9] | Dogariu A, Michael J B, Scully M O and Miles R B 2011 Science 331 442 |
[10] | Li H L, Yao D W, Wang S Q, Fu Y and Xu H L 2019 Chin. Phys. B 28 114204 |
[11] | Kartashov D, Ališauskas S, Andriukaitis G, Pugžlys A, Shneider M, Zheltikov A, Chin S L and Baltuška A 2012 Phys. Rev. A 86 033831 |
[12] | Zhang H S, Jing C R, Yao J P, Li G H, Zeng B, Chu W, Ni J L, Xie H Q, Xu H L, Chin S L, Yamanouchi K R, Cheng Y and Xu Z Z 2013 Phys. Rev. X 3 041009 |
[13] | Chu W, Li H L, Ni J L, Zeng B, Yao J P, Zhang H S, Li G H, Jing C R, Xie H Q, Xu H L, Yamanouchi K R and Cheng Y 2014 Appl. Phys. Lett. 104 091106 |
[14] | Mitryukovskiy S, Liu Y, Ding P J, Houard A and Mysyrowicz A 2014 Opt. Express 22 12750 |
[15] | Xu H L, Loetstedt E, Iwasaki A and Yamanouchi K 2015 Nat. Commun. 6 8347 |
[16] | Liu Y, Ding P J, Lambert G, Houard A, Tikhonchuk V and Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203 |
[17] | Yao J P, Jiang S C, Chu W, Zeng B, Wu C Y, Lu R F, Li Z T, Xie H Q, Li G H, Yu C, Wang Z S, Jiang H B, Gong Q H and Cheng Y 2016 Phys. Rev. Lett. 116 143007 |
[18] | Xu H L, Lötstedt E, Ando T, Iwasaki A and Yamanouchi K 2017 Phys. Rev. A 96 041401 |
[19] | Zhang A, Lei M W, Gao J S, Wu C Y, Gong Q H and Jiang H B 2019 Opt. Express 27 pp 14922 |
[20] | Wang S Q, Fu Y, Yao D W, Chen S M, Zhang W, Li H L and Xu H L 2019 Chin. Phys. B 28 123301 |
[21] | Li H L, Hou M Y, Zang H W, Fu Y, Lötstedt E, Ando T, Iwasaki A, Yamanouchi A and Xu H L 2019 Phys. Rev. Lett. 122 013202 |
[22] | Ando T, Lötstedt E, Iwasaki A, Li H L, Fu Y, Wang S Q, Xu H L and Yamanouchi K 2019 Phys. Rev. Lett. 123 203201 |
[23] | Li H X, Lotstedt E, Li H L, Zhou Y, Dong N N, Deng L H, Lu P F, Ando T, Iwasaki A, Fu Y, Wang S Q, Wu J, Yamanouchi K and Xu H L 2020 Phys. Rev. Lett. 125 053201 |
[24] | Collet D and Huet T R 1999 J. Mol. Spectrosc. 197 46 |
[25] | Zhang Y P, Deng L H, Zhang J and Chen Y Q 2015 Chin. J. Chem. Phys. 28 134 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|