Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 036201    DOI: 10.1088/0256-307X/38/3/036201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Novel Superconducting Electrides in Ca–S System under High Pressures
Yun-Xian Liu , Chao Wang*, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu*
Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
Cite this article:   
Yun-Xian Liu , Chao Wang, Shuai Han  et al  2021 Chin. Phys. Lett. 38 036201
Download: PDF(3883KB)   PDF(mobile)(4095KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Due to their unique structure properties, most of the electrides that possess extra electrons locating in interstitial regions as anions are insulators. Metallic and superconducting electrides are very rare under ambient conditions. We systematically search possible compounds in Ca–S systems stabilized under various pressures up to 200 GPa, and investigate their crystal structures and properties using first-principles calculations. We predict a series of novel stoichiometries in Ca–S systems as potential superconductors, including $P2_{1}/m$ Ca$_{3}$S, $P$4mbm Ca$_{3}$S, Pnma Ca$_{2}$S, Cmcm Ca$_{2}$S, Fddd CaS$_{2}$, Immm CaS$_{3}$ and $C2/c$ CaS$_{4}$. The $P4mbm$ Ca$_{3}$S phase exhibits a maximum $T_{\rm c}$ value of $\sim $20 K. It is interesting to notice that the $P2_{1}/m$ Ca$_{3}$S and Pnma Ca$_{2}$S stabilized at 60 and 50 GPa behave as superconducting electrides with critical temperatures $T_{\rm c}$ of 7.04 K and 0.26 K, respectively. More importantly, our results demonstrate that $P2_{1}/m$ Ca$_{3}$S and Pnma Ca$_{2}$S are dynamically stable at 5 GPa and 0 GPa, respectively, indicating a high possibility to be quenched to ambient condition or synthesized using the large volume press.
Received: 22 December 2020      Published: 02 March 2021
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11704220, 11804184, 11974208 and 11804185), the Shandong Provincial Natural Science Foundation (Grant Nos. ZR2017BA020, ZR2018PA010, ZR2019MA054 and ZR2017BA012).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/3/036201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I3/036201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun-Xian Liu 
Chao Wang
Shuai Han 
Xin Chen 
Hai-Rui Sun 
and Xiao-Bing Liu
[1] Cava R J, Van Dover R B, Batlogg B and Rietman E A 1987 Phys. Rev. Lett. 58 408
[2] Kamihara Y, Watanabe T, Hirano M et al. 2008 J. Am. Chem. Soc. 130 3296
[3] Hsu F C, Luo J Y, Yeh K W et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262
[4] Mizuguchi Y, Tomioka F, Tsuda S et al. 2008 Appl. Phys. Lett. 93 152505
[5] Sun Y, Lv J, Xie Y, Liu H and Ma Y M 2019 Phys. Rev. Lett. 123 097001
[6] Xie H, Yao Y, Feng X et al. 2020 Phys. Rev. Lett. 125 217001
[7] Shi W, Yu J, Xu T et al. 2021 Sci. Chin. Mater. 64 664
[8] Chen J 2021 J. Supercond. Nov. Magn. (in press)
[9] Yang C, Liu Y and Wang Y 2019 Science 366 1505
[10] Wang X, Li H and Dong Z 2019 Acta Phys. Sin. 68 027401 (in Chinese)
[11] Liang C, Zhang J and Zhao K 2020 Acta Phys. Sin. 69 237401 (in Chinese)
[12] Miao M S and Hoffmann R 2014 Acc. Chem. Res. 47 1311
[13] Miao M S, Wang X L and Brgoch J 2015 J. Am. Chem. Soc. 137 14122
[14] Miyakawa M, Kim S W and Hirano M 2007 J. Am. Chem. Soc. 129 7270
[15] Zhang Y, Wang B and Xiao Z 2017 npj Quantum Mater. 2 45
[16] Ge Y, Guan S and Liu Y 2017 New J. Phys. 19 123020
[17] Wang J, Hanzawa K and Hiramatsu H 2017 J. Am. Chem. Soc. 139 15668
[18] Lu Y, Li J and Tada T 2016 J. Am. Chem. Soc. 138 3970
[19] Matsuoka T and Shimizu K 2009 Nature 458 186
[20] Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 146401
[21] Ma Y, Eremets M, Oganov A R et al. 2009 Nature 458 182
[22] Pickard C J and Needs R J 2011 Phys. Rev. Lett. 107 087201
[23] Li P, Gao G and Wang Y 2010 J. Phys. Chem. C 114 21745
[24] Dong X, Oganov A R, Goncharov A F et al. 2017 Nat. Chem. 9 440
[25] Zhu Q, Oganov A R and Lyakhov A O 2013 Phys. Chem. Chem. Phys. 15 7696
[26] Botana J, Brgoch J, Hou C et al. 2016 Inorg. Chem. 55 9377
[27] Shao S, Zhu W, Lv J et al. 2020 npj Comput. Mater. 6 11
[28] Sa B, Xiong R, Wen C et al. 2020 J. Phys. Chem. C 124 7683
[29] Zhao Z, Zhang S and Yu T 2019 Phys. Rev. Lett. 122 097002
[30] Zhang Y, Wang H, Wang Y, Zhang L and Ma Y 2017 Phys. Rev. X 7 011017
[31] Zhu Q, Frolov T and Choudhary K 2019 Matter 1 1293
[32] Wang Y, Lv J and Zhu L 2010 Phys. Rev. B 82 094116
[33] Wang Y, Lv J and Zhu L 2012 Comput. Phys. Commun. 183 2063
[34] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[35] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227
[36] Lyakhov A O, Oganov A R and Stokes H T 2013 Comput. Phys. Commun. 184 1172
[37] Chu B H, Zhao Y, Yan J L et al. 2018 Chin. Phys. Lett. 35 016401
[38] Sun G L, Huang H M and Li Y L 2016 Chin. Phys. Lett. 33 026104
[39] Wang C, Liu Y X, Chen X et al. 2020 Chin. Phys. Lett. 37 026201
[40] Qu N R, Wang H C, Li Q et al. 2019 Chin. Phys. Lett. 36 036201
[41] Cang Y P, Lian S B, Yang H M et al. 2016 Chin. Phys. Lett. 33 066301
[42] Wu J H and Liu C X 2016 Chin. Phys. Lett. 33 036202
[43] Zhou D, Zheng Y, Pu C et al. 2018 Chin. Phys. Lett. 35 107101
[44] Zhang S, He J, Zhao Z et al. 2019 Chin. Phys. B 28 106104
[45] Liu G, Yu Z, Liu H et al. 2018 J. Phys. Chem. Lett. 9 5785
[46] Peng F, Botana J, Wang Y et al. 2016 J. Phys. Chem. Lett. 7 4562
[47] Kruglov I A, Semenok D V, Song H et al. 2020 Phys. Rev. B 101 024508
[48] Rybkovskiy D V, Kvashnin A G, Kvashnina Y A et al. 2020 J. Phys. Chem. Lett. 11 2393
[49] Wan B, Zhang J, Wu L et al. 2019 Chin. Phys. B 28 106201
[50] Tong Q, Lv J, Gao P et al. 2019 Chin. Phys. B 28 106105
[51] Tian Y, Sun W, Chen B et al. 2019 Chin. Phys. B 28 103104
[52] Tang C, Kour G and Du A 2019 Chin. Phys. B 28 107306
[53] Lin J, Du X and Yang G 2019 Chin. Phys. B 28 106106
[54] Hermann A 2019 Chin. Phys. B 28 106107
[55] Cui W and Li Y 2019 Chin. Phys. B 28 107104
[56] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[57] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[58] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[59] Parlinski K, Li Z and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[60] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[61] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[62] Bader R F 1985 Acc. Chem. Res. 18 9
[63] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[64] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[65] Maintz S, Deringer V L and Tchougréeff A L 2013 J. Comput. Chem. 34 2557
[66] Deringer V L, Tchougréeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[67] Maintz S, Deringer V L and Tchougréeff A L 2016 J. Comput. Chem. 37 1030
[68] Giannozzi P, Baroni S, Bonini N et al. 2009 J. Phys.: Condens. Matter 21 395502
[69] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
Viewed
Full text


Abstract