FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Tuning Thermal Conductivity in Si Nanowires with Patterned Structures |
Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang* |
College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China |
|
Cite this article: |
Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang et al 2021 Chin. Phys. Lett. 38 024401 |
|
|
Abstract Tuning the thermal conductivity of silicon nanowires (Si-NWs) is essential for realization of future thermoelectric devices. The corresponding management of thermal transport is strongly related to the scattering of phonons, which are the primary heat carriers in Si-NWs. Using the molecular dynamics method, we find that the scattering of phonons from internal body defects is stronger than that from surface structures in the low-porosity range. Based on our simulations, we propose the concept of an exponential decay in thermal conductivity with porosity, specifically in the low-porosity range. In contrast, the thermal conductivity of Si-NWs with a higher porosity approaches the amorphous limit, and is insensitive to specific phonon scattering processes. Our findings contribute to a better understanding of the tuning of thermal conductivity in Si-NWs by means of patterned nanostructures, and may provide valuable insights into the optimal design of one-dimensional thermoelectric materials.
|
|
Received: 10 October 2020
Published: 27 January 2021
|
|
PACS: |
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
44.10.+i
|
(Heat conduction)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11875047). |
|
|
[1] | Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727 |
[2] | Majumdar A 2004 Science 303 777 |
[3] | Rurali R 2010 Rev. Mod. Phys. 82 427 |
[4] | Chen R, Lee J, Lee W and Li D 2019 Chem. Rev. 119 9260 |
[5] | Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829 |
[6] | Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873 |
[7] | Zeng Y J, Wu D, Cao X H, Feng Y X, Tang L M and Chen K Q 2020 J. Mater. Chem. A 8 11884 |
[8] | Chen X K and Chen K Q 2020 J. Phys.: Condens. Matter 32 153002 |
[9] | Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Nature 451 163 |
[10] | Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A and Heath J R 2008 Nature 451 168 |
[11] | Zhao Y S, Yang L N, Kong L Y, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B W, Thong J T L and Hippalgaonkar K 2017 Adv. Funct. Mater. 27 1702824 |
[12] | Zhao Y S, Liu D, Chen J, Zhu L Y, Belianinov A, Ovchinnikova O S, Unocic R R, Burch M J, Kim S, Hao H F, Pickard D S, Li B W and Thong J T L 2017 Nat. Commun. 8 15919 |
[13] | Weisse J M, Marconnet A M, Kim D R, Rao P M, Panzer M A, Goodson K E and Zheng X L 2012 Nanoscale Res. Lett. 7 554 |
[14] | Lim J W, Hippalgaonkar K, Andrews S C, Majumdar A and Yang P D 2012 Nano Lett. 12 2475 |
[15] | Zianni X 2018 J. Phys. D 51 114003 |
[16] | Shahraki M G and Zeinali Z 2015 J. Phys. Chem. Solids 85 233 |
[17] | Kang B and Estreicher S K 2014 Phys. Rev. B 89 155409 |
[18] | Wang Z, Ni Z H, Zhao R J, Chen M H, Bi K D and Chen Y F 2011 Physica B 406 2515 |
[19] | da C C A, Termentzidis K, Chantrenne P and Kleber X 2011 J. Appl. Phys. 110 034309 |
[20] | Liu L and Chen X 2010 J. Appl. Phys. 107 033501 |
[21] | Wang J and Wang J S 2007 Appl. Phys. Lett. 90 241908 |
[22] | Volz S G and Chen G 1999 Appl. Phys. Lett. 75 2056 |
[23] | Nakamura Y 2018 Sci. Technol. Adv. Mater. 19 31 |
[24] | Yang N, Zhang G and Li B 2008 Nano Lett. 8 276 |
[25] | Hu M and Poulikakos D 2012 Nano Lett. 12 5487 |
[26] | Wingert M C, Chen Z C Y, Dechaumphai E, Moon J, Kim J H, Xiang J and Chen R K 2011 Nano Lett. 11 5507 |
[27] | Donadio D and Galli G 2009 Phys. Rev. Lett. 102 195901 |
[28] | Dettori R, Melis C, Cartoixa X, Rurali R and Colombo L 2015 Phys. Rev. B 91 054305 |
[29] | Yang L, Yang N and Li B W 2014 Nano Lett. 14 1734 |
[30] | Chen J, Zhang G and Li B W 2010 Nano Lett. 10 3978 |
[31] | Yu J K, Mitrovic S, Tham D, Varghese J and Heath J R 2010 Nat. Nanotechnol. 5 718 |
[32] | Xiong S Y, Kosevich Y A, Saaskilahti K, Ni Y X and Volz S 2014 Phys. Rev. B 90 195439 |
[33] | Zhou Y G and Hu M 2016 Nano Lett. 16 6178 |
[34] | Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B and Zhang G 2020 Phys. Rep. 860 1 |
[35] | Müller-Plathe F 1997 J. Chem. Phys. 106 6082 |
[36] | Zhang M M, Lussetti E, de Souza L E S and Muller-Plathe F 2005 J. Phys. Chem. B 109 15060 |
[37] | Plimpton S 1995 J. Comput. Phys. 117 1 |
[38] | Zeng Y J, Liu Y Y, Zhou W X and Chen K Q 2018 Chin. Phys. B 27 036304 |
[39] | Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906 |
[40] | Tersoff J 1989 Phys. Rev. B 39 5566(R) |
[41] | Berendsen H J C, Postma J P M, Gunsteren W F V, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684 |
[42] | Li D Y, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934 |
[43] | Donadio D and Galli G 2010 Nano Lett. 10 847 |
[44] | Klemens P G 1955 Proc. Phys. Soc. A 68 1113 |
[45] | Joseph L F M D K, Allen P B and Wooten F 1993 Phys. Rev. B 48 12589 |
[46] | Lee Y, Lee S and Hwang G S 2011 Phys. Rev. B 83 125202 |
[47] | Wingert M C, Kwon S, Hu M, Poulikakos D, Xiang J and Chen R K 2015 Nano Lett. 15 2605 |
[48] | Larkin J M and McGaughey A J H 2014 Phys. Rev. B 89 144303 |
[49] | Hussein M I, Tsai C N and Honarvar H 2020 Adv. Funct. Mater. 30 1906718 |
[50] | Xiong S Y, Saaskilahti K, Kosevich Y A, Han H X, Donadio D and Volz S 2016 Phys. Rev. Lett. 117 025503 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|