Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 024401    DOI: 10.1088/0256-307X/38/2/024401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tuning Thermal Conductivity in Si Nanowires with Patterned Structures
Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang*
College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
Cite this article:   
Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang  et al  2021 Chin. Phys. Lett. 38 024401
Download: PDF(1030KB)   PDF(mobile)(1014KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tuning the thermal conductivity of silicon nanowires (Si-NWs) is essential for realization of future thermoelectric devices. The corresponding management of thermal transport is strongly related to the scattering of phonons, which are the primary heat carriers in Si-NWs. Using the molecular dynamics method, we find that the scattering of phonons from internal body defects is stronger than that from surface structures in the low-porosity range. Based on our simulations, we propose the concept of an exponential decay in thermal conductivity with porosity, specifically in the low-porosity range. In contrast, the thermal conductivity of Si-NWs with a higher porosity approaches the amorphous limit, and is insensitive to specific phonon scattering processes. Our findings contribute to a better understanding of the tuning of thermal conductivity in Si-NWs by means of patterned nanostructures, and may provide valuable insights into the optimal design of one-dimensional thermoelectric materials.
Received: 10 October 2020      Published: 27 January 2021
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  44.10.+i (Heat conduction)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11875047).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/024401       OR      http://cpl.iphy.ac.cn/Y2021/V38/I2/024401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gui-ping Zhu 
Chang-wei Zhao 
Xi-wen Wang 
and Jian Wang
[1] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
[2] Majumdar A 2004 Science 303 777
[3] Rurali R 2010 Rev. Mod. Phys. 82 427
[4] Chen R, Lee J, Lee W and Li D 2019 Chem. Rev. 119 9260
[5] Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
[6] Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873
[7] Zeng Y J, Wu D, Cao X H, Feng Y X, Tang L M and Chen K Q 2020 J. Mater. Chem. A 8 11884
[8] Chen X K and Chen K Q 2020 J. Phys.: Condens. Matter 32 153002
[9] Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Nature 451 163
[10] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A and Heath J R 2008 Nature 451 168
[11] Zhao Y S, Yang L N, Kong L Y, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B W, Thong J T L and Hippalgaonkar K 2017 Adv. Funct. Mater. 27 1702824
[12] Zhao Y S, Liu D, Chen J, Zhu L Y, Belianinov A, Ovchinnikova O S, Unocic R R, Burch M J, Kim S, Hao H F, Pickard D S, Li B W and Thong J T L 2017 Nat. Commun. 8 15919
[13] Weisse J M, Marconnet A M, Kim D R, Rao P M, Panzer M A, Goodson K E and Zheng X L 2012 Nanoscale Res. Lett. 7 554
[14] Lim J W, Hippalgaonkar K, Andrews S C, Majumdar A and Yang P D 2012 Nano Lett. 12 2475
[15] Zianni X 2018 J. Phys. D 51 114003
[16] Shahraki M G and Zeinali Z 2015 J. Phys. Chem. Solids 85 233
[17] Kang B and Estreicher S K 2014 Phys. Rev. B 89 155409
[18] Wang Z, Ni Z H, Zhao R J, Chen M H, Bi K D and Chen Y F 2011 Physica B 406 2515
[19] da C C A, Termentzidis K, Chantrenne P and Kleber X 2011 J. Appl. Phys. 110 034309
[20] Liu L and Chen X 2010 J. Appl. Phys. 107 033501
[21] Wang J and Wang J S 2007 Appl. Phys. Lett. 90 241908
[22] Volz S G and Chen G 1999 Appl. Phys. Lett. 75 2056
[23] Nakamura Y 2018 Sci. Technol. Adv. Mater. 19 31
[24] Yang N, Zhang G and Li B 2008 Nano Lett. 8 276
[25] Hu M and Poulikakos D 2012 Nano Lett. 12 5487
[26] Wingert M C, Chen Z C Y, Dechaumphai E, Moon J, Kim J H, Xiang J and Chen R K 2011 Nano Lett. 11 5507
[27] Donadio D and Galli G 2009 Phys. Rev. Lett. 102 195901
[28] Dettori R, Melis C, Cartoixa X, Rurali R and Colombo L 2015 Phys. Rev. B 91 054305
[29] Yang L, Yang N and Li B W 2014 Nano Lett. 14 1734
[30] Chen J, Zhang G and Li B W 2010 Nano Lett. 10 3978
[31] Yu J K, Mitrovic S, Tham D, Varghese J and Heath J R 2010 Nat. Nanotechnol. 5 718
[32] Xiong S Y, Kosevich Y A, Saaskilahti K, Ni Y X and Volz S 2014 Phys. Rev. B 90 195439
[33] Zhou Y G and Hu M 2016 Nano Lett. 16 6178
[34] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B and Zhang G 2020 Phys. Rep. 860 1
[35] Müller-Plathe F 1997 J. Chem. Phys. 106 6082
[36] Zhang M M, Lussetti E, de Souza L E S and Muller-Plathe F 2005 J. Phys. Chem. B 109 15060
[37] Plimpton S 1995 J. Comput. Phys. 117 1
[38] Zeng Y J, Liu Y Y, Zhou W X and Chen K Q 2018 Chin. Phys. B 27 036304
[39] Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906
[40] Tersoff J 1989 Phys. Rev. B 39 5566(R)
[41] Berendsen H J C, Postma J P M, Gunsteren W F V, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[42] Li D Y, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[43] Donadio D and Galli G 2010 Nano Lett. 10 847
[44] Klemens P G 1955 Proc. Phys. Soc. A 68 1113
[45] Joseph L F M D K, Allen P B and Wooten F 1993 Phys. Rev. B 48 12589
[46] Lee Y, Lee S and Hwang G S 2011 Phys. Rev. B 83 125202
[47] Wingert M C, Kwon S, Hu M, Poulikakos D, Xiang J and Chen R K 2015 Nano Lett. 15 2605
[48] Larkin J M and McGaughey A J H 2014 Phys. Rev. B 89 144303
[49] Hussein M I, Tsai C N and Honarvar H 2020 Adv. Funct. Mater. 30 1906718
[50] Xiong S Y, Saaskilahti K, Kosevich Y A, Han H X, Donadio D and Volz S 2016 Phys. Rev. Lett. 117 025503
Related articles from Frontiers Journals
[1] Vali Dalouji, Dariush Mehrparvar, Shahram Solaymani, Sahar Rezaee. Effect of Nickel Distributions Embedded in Amorphous Carbon Films on Transport Properties[J]. Chin. Phys. Lett., 2018, 35(2): 024401
[2] Deyan Sun, Cheng Shang, Zhipan Liu, Xingao Gong. Intrinsic Features of an Ideal Glass[J]. Chin. Phys. Lett., 2017, 34(2): 024401
[3] LU Xing, ZHONG Wei-Rong. Low Thermal Conductivity of Paperclip-Shaped Graphene Superlattice Nanoribbons[J]. Chin. Phys. Lett., 2015, 32(09): 024401
[4] WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin, ZHANG Wei, ZHONG Wei-Rong. Heat Transport in Double-Bond Linear Chains of Fullerenes[J]. Chin. Phys. Lett., 2015, 32(07): 024401
[5] CHEN Xiao-Ming, HUO Kai-Tuo, LIU Peng. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix[J]. Chin. Phys. Lett., 2014, 31(1): 024401
[6] PAN Rui-Qin, XU Zi-Jian, DAI Cui-Xia. Thermal Conductivity of the Partly Covered Inner Tube in a Double-Walled Carbon Nanotube with Varied Coverage Ratios[J]. Chin. Phys. Lett., 2014, 31(1): 024401
[7] PENG Chun, ZHANG Hong, CHENG Xin-Lu. Path Integral Monte Carlo Study of X@C50 [X=H2, He, Ne, Ar][J]. Chin. Phys. Lett., 2013, 30(11): 024401
[8] LÜ, Yong-Jun**. Enhanced Surface Premelting of Ni90Si10 Nanoparticles[J]. Chin. Phys. Lett., 2012, 29(4): 024401
[9] ZHOU Guo-Rui, FENG Guo-Ying, ZHANG Yi, MA Zi, WANG Jian-Jun. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide[J]. Chin. Phys. Lett., 2012, 29(2): 024401
[10] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 024401
[11] HU Guo-Jie, CAO Bing-Yang, LI Yuan-Wei. Thermal Conduction in a Single Polyethylene Chain Using Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2014, 31(08): 024401
Viewed
Full text


Abstract