FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Symmetry-Protected Scattering in Non-Hermitian Linear Systems |
L. Jin* and Z. Song |
School of Physics, Nankai University, Tianjin 300071, China |
|
Cite this article: |
L. Jin and Z. Song 2021 Chin. Phys. Lett. 38 024202 |
|
|
Abstract Symmetry plays fundamental role in physics and the nature of symmetry changes in non-Hermitian physics. Here the symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the random matrices. The even-parity symmetries impose strict constraints on the scattering coefficients: the time-reversal ($C$ and $K$) symmetries protect the symmetric transmission or reflection; the pseudo-Hermiticity ($Q$ symmetry) or the inversion ($P$) symmetry protects the symmetric transmission and reflection. For the inversion-combined time-reversal symmetries, the symmetric features on the transmission and reflection interchange. The odd-parity symmetries including the particle-hole symmetry, chiral symmetry, and sublattice symmetry cannot ensure the scattering to be symmetric. These guiding principles are valid for both Hermitian and non-Hermitian linear systems. Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics.
|
|
Received: 01 December 2020
Published: 04 January 2021
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11975128 and 11874225). |
|
|
[1] | Beenakker C W J 1997 Rev. Mod. Phys. 69 731 |
[2] | Potton R J 2004 Rep. Prog. Phys. 67 717 |
[3] | Sounas D L and Alù A 2017 Nat. Photon. 11 774 |
[4] | Yu Z and Fan S 2009 Nat. Photon. 3 91 |
[5] | Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447 |
[6] | Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524 |
[7] | Li X Q, Zhang X Z, Zhang G and Song Z 2015 Phys. Rev. A 91 032101 |
[8] | Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901 |
[9] | Du L, Zhang Y and Wu J H 2020 Sci. Rep. 10 1113 |
[10] | Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C and Ross C A 2011 Nat. Photon. 5 758 |
[11] | Ramezani H, Lin Z, Kalish S, Kottos T, Kovanis V and Vitebskiy I 2012 Opt. Express 20 26200 |
[12] | El-Ganainy R, Kumar P and Levy M 2013 Opt. Lett. 38 61 |
[13] | El-Ganainy R, Eisfeld A, Levy M and Christodoulides D N 2013 Appl. Phys. Lett. 103 161105 |
[14] | Ramezani H, Kalish S, Vitebskiy I and Kottos T 2014 Phys. Rev. Lett. 112 043904 |
[15] | Lepri S and Casati G 2011 Phys. Rev. Lett. 106 164101 |
[16] | Bender N, Factor S, Bodyfelt J D, Ramezani H, Christodoulides D N, Ellis F M and Kottos T 2013 Phys. Rev. Lett. 110 234101 |
[17] | Shi Y, Yu Z and Fan S 2015 Nat. Photon. 9 388 |
[18] | Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601 |
[19] | Sounas D L and Alù A 2017 Phys. Rev. Lett. 118 154302 |
[20] | Fang K, Yu Z and Fan S 2012 Phys. Rev. Lett. 108 153901 |
[21] | Fang K, Yu Z and Fan S 2012 Nat. Photon. 6 782 |
[22] | Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196 |
[23] | Tzuang L D, Feng K, Nussenzveig P, Fan S and Lipson M 2014 Nat. Photon. 8 701 |
[24] | Li E, Eggleton B J, Fang K and Fan S 2014 Nat. Commun. 5 3225 |
[25] | Longhi S 2014 Opt. Lett. 39 5892 |
[26] | Mukherjee S, Di Liberto M, Öhberg P, Thomson R R and Goldman N 2018 Phys. Rev. Lett. 121 075502 |
[27] | Cooper N R, Dalibard J and Spielman I B 2019 Rev. Mod. Phys. 91 015005 |
[28] | Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M, Schuster D, Simon J, Zilberberg O and Carusotto I 2019 Rev. Mod. Phys. 91 015006 |
[29] | Lumer Y, Bandres M A, Heinrich M, Maczewsky L J, Herzig-Sheinfux H, Szameit A and Segev M 2019 Nat. Photon. 13 339 |
[30] | Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O and Szameit A 2020 Nat. Commun. 11 907 |
[31] | Dutt A, Lin Q, Yuan L, Minkov M, Xiao M and Fan S 2020 Science 367 59 |
[32] | Krasnok A, Baranov D, Li H N, Miri M A, Monticone F and Alù A 2019 Adv. Opt. Photon. 11 892 |
[33] | Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popović M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R and Renner H 2013 Nat. Photon. 7 579 |
[34] | Fan S, Baets R, Petrov A, Yu Z, Joannopoulos J D, Freude W, Melloni A, Popović M, Vanwolleghem M, Jalas D, Eich M, Krause M, Renner H, Brinkmeyer E and Doerr C R 2012 Science 335 38 |
[35] | Yin X and Zhang X 2013 Nat. Mater. 12 175 |
[36] | Chong Y D, Ge L, Cao H and Stone A D 2010 Phys. Rev. Lett. 105 053901 |
[37] | Wan W, Chong Y, Ge L, Noh H, Stone A D and Cao H 2011 Science 331 889 |
[38] | Baranov D G, Krasnok A, Shegai T, Alù A and Chong Y 2017 Nat. Rev. Mater. 2 17064 |
[39] | Baranov D G, Krasnok A and Alù A 2017 Optica 4 1457 |
[40] | Longhi S 2018 Opt. Lett. 43 2122 |
[41] | Trainiti G, Ra'di Y, Ruzzene M and Alù A 2019 Sci. Adv. 5 eaaw3255 |
[42] | Zhong Q, Simonson L, Kottos T and El-Ganainy R 2020 Phys. Rev. Res. 2 013362 |
[43] | Burke P C, Wiersig J and Haque M 2020 Phys. Rev. A 102 012212 |
[44] | Cannata F, Dedonder J P and Ventura A 2007 Ann. Phys. (N.Y.) 322 397 |
[45] | Jin L, Zhang X Z, Zhang G and Song Z 2016 Sci. Rep. 6 20976 |
[46] | Muga J G, Palao J P, Navarro B and Egusquiza I L 2004 Phys. Rep. 395 357 |
[47] | Longhi S 2010 Phys. Rev. A 82 031801(R) |
[48] | Longhi S 2011 J. Phys. A 44 485302 |
[49] | Chong Y D, Ge L and Stone A D 2011 Phys. Rev. Lett. 106 093902 |
[50] | Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 |
[51] | Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y and Scherer A 2011 Science 333 729 |
[52] | Kalish S, Lin Z and Kottos T 2012 Phys. Rev. A 85 055802 |
[53] | Ge L, Chong Y D and Stone A D 2012 Phys. Rev. A 85 023802 |
[54] | Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167 |
[55] | Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108 |
[56] | Castaldi G, Savoia S, Galdi V, Alù A and Engheta N 2013 Phys. Rev. Lett. 110 173901 |
[57] | Schomerus H 2013 Philos. Trans. R. Soc. A 371 20120194 |
[58] | Ahmed Z 2013 Phys. Lett. A 377 957 |
[59] | Ambichl P, Makris K G, Ge L, Chong Y, Stone A D and Rotter S 2013 Phys. Rev. X 3 041030 |
[60] | Savoia S, Castaldi G and Galdi V 2014 Phys. Rev. B 89 085105 |
[61] | Mostafazadeh A 2014 J. Phys. A 47 505303 |
[62] | Wu J H, Artoni M and Rocca G C L 2014 Phys. Rev. Lett. 113 123004 |
[63] | Ramezani H, Li H K, Wang Y and Zhang X 2014 Phys. Rev. Lett. 113 263905 |
[64] | Fleury R, Sounas D and Alù A 2015 Nat. Commun. 6 5905 |
[65] | Gear J, Liu F, Chu S T, Rotter S and Li J 2015 Phys. Rev. A 91 033825 |
[66] | Huang Y, Veronis G and Min C 2015 Opt. Express 23 029882 |
[67] | Miri M A, Eftekhar M A, Facao M, Abouraddy A F, Bakry A, Razvi M A N, Alshahrie A, Alù A and Christodoulides D N 2016 J. Opt. 18 075104 |
[68] | Zhao H, Fegadolli W S, Yu J, Zhang Z, Ge L, Scherer A and Feng L 2016 Phys. Rev. Lett. 117 193901 |
[69] | Wu J H, Artoni M and Rocca G C L 2016 Sci. Rep. 6 35356 |
[70] | Ge L and Feng L 2016 Phys. Rev. A 94 043836 |
[71] | Wong Z J, Xu Y, Kim J, Brien K O, Wang Y, Feng L and Zhang X 2016 Nat. Photon. 10 796 |
[72] | Christensen J, Willatzen M, Velasco V R and Lu M H 2016 Phys. Rev. Lett. 116 207601 |
[73] | Ramezani H, Wang Y, Yablonovitch E and Zhang X 2016 IEEE J. Sel. Top. Quantum Electron. 22 115 |
[74] | Xiao S, Gear J, Rotter S and Li J 2016 New J. Phys. 18 085004 |
[75] | Mostafazadeh A 2016 J. Phys. A 49 445302 |
[76] | Gear J, Sun Y, Xiao S, Zhang L, Fitzgerald R, Rotter S, Chen H and Li J 2017 New J. Phys. 19 123041 |
[77] | Wu J H, Artoni M and Rocca G C L 2017 Phys. Rev. A 95 053862 |
[78] | Ge L and Feng L 2017 Phys. Rev. A 95 013813 |
[79] | Kalozoumis P A, Morfonios C V, Kodaxis G, Diakonos F K and Schmelcher P 2017 Appl. Phys. Lett. 110 121106 |
[80] | Zhang L L, Zhan G H, Li Z Z and Gong W J 2017 Phys. Rev. A 96 062133 |
[81] | Jin L 2018 Phys. Rev. A 97 033840 |
[82] | Luo J, Li J and Lai Y 2018 Phys. Rev. X 8 031035 |
[83] | Gao F, Dong J R, Liu Y M 2018 Y. Zhang J. Opt. Soc. Am. B 35 2075 |
[84] | Koutserimpas T T, Alù A and Fleury R 2018 Phys. Rev. A 97 013839 |
[85] | Shen C, Li J, Peng X and Cummer S A 2018 Phys. Rev. Mater. 2 125203 |
[86] | Wu N, Zhang C, Jin X R, Zhang Y Q and Lee Y P 2018 Opt. Express 26 3839 |
[87] | Merkel A, Romero-García V, Groby J P, Li J and Christensen J 2018 Phys. Rev. B 98 201102(R) |
[88] | Zhi Y, Yang X, Wu J, Du S, Cao P, Deng D and Liu C T 2018 Photon. Res. 6 579 |
[89] | Wu H, Yang X, Tang Y, Tang X, Deng D, Liu H and Wei Z 2019 Ann. Phys. (Berlin) 531 1900120 |
[90] | Simón M A, Buendía A, Kiely A, Mostafazadeh A and Muga J G 2019 Phys. Rev. A 99 052110 |
[91] | Zhao Z, Guo C and Fan S 2019 Phys. Rev. A 99 033839 |
[92] | Sweeney W R, Hsu C W, Rotter S and Stone A D 2019 Phys. Rev. Lett. 122 093901 |
[93] | Sweeney W R, Hsu C W and Stone A D 2020 Phys. Rev. A 102 063511 |
[94] | Novitsky A, Lyakhov D, Michels D, Pavlov A A, Shalin A S and Novitsky D V 2020 Phys. Rev. A 101 043834 |
[95] | Zhu H, Yang X, Lin Z, Liu X, Yang X 2020 Opt. Commun. 459 124945 |
[96] | Rotter S and Gigan S 2017 Rev. Mod. Phys. 89 015005 |
[97] | Kawabata K, Higashikawa S, Gong Z, Ashida Y and Ueda M 2019 Nat. Commun. 10 297 |
[98] | Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015 |
[99] | Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 |
[100] | Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C and Kivshar Y S 2016 Laser & Photon. Rev. 10 177 |
[101] | Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752 |
[102] | Longhi S 2017 Europhys. Lett. 120 64001 |
[103] | El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11 |
[104] | Miri M A and Alù A 2019 Science 363 eaar7709 |
[105] | Özdemir S K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783 |
[106] | Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P and Chen Y F 2019 Adv. Mater. 32 1903639 |
[107] | Bernard D and LeClair A 2001 arXiv:cond-mat/0110649 |
[108] | We emphasize two aspects in the definitions of symmetries that are distinct from the topological classification (Ref.[98]): (i) The signs $\epsilon _{\Bbbk }$ and $\epsilon _{q}$ in the $K$ and $Q$ symmetries, which are absent in the definitions of the $K$ and $Q$ symmetries for topological classification because $H_{\rm c}$ and $iH_{\rm c}$ have identical topological properties. However, the scattering properties of $H_{\rm c}$ and $iH_{\rm c}$ are not identical. The symmetries with opposite parities impose different scattering features. (ii) The even-parity $P$ symmetry. |
[109] | The combination of two symmetries that belong to the same type gives the P symmetry. The combination of the P symmetry and any of the C, K, Q symmetries does not alter the C, K, Q symmetries. The combination of any two of the three symmetries C, K, Q produces the third symmetry. |
[110] | Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W and Yan B 2020 Phys |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|