FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells |
Rongqian Wang1*, Jincheng Lu1,2, and Jian-Hua Jiang1* |
1School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China 2Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
|
|
Cite this article: |
Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang 2021 Chin. Phys. Lett. 38 024201 |
|
|
Abstract Near-field thermophotovoltaic systems functioning at 400–900 K based on graphene-hexagonal-boron-nitride heterostructures and thin-film InSb p–n junctions are investigated theoretically. The performances of two near-field systems with different emitters are examined carefully. One near-field system consists of a graphene-hexagonal-boron-nitride-graphene sandwiched structure as the emitter, while the other system has an emitter made of the double graphene-hexagonal-boron-nitride heterostructure. It is shown that both systems exhibit higher output power density and energy efficiency than the near-field system based on mono graphene-hexagonal-boron-nitride heterostructure. The optimal output power density of the former device can reach $1.3\times10^{5}$ W/m$^{2}$, while the optimal energy efficiency can be as large as $42\%$ of the Carnot efficiency. We analyze the underlying physical mechanisms that lead to the excellent performances of the proposed near-field thermophotovoltaic systems. Our results are valuable toward high-performance moderate temperature thermophotovoltaic systems as appealing thermal-to-electric energy conversion (waste heat harvesting) devices.
|
|
Received: 12 October 2020
Published: 27 January 2021
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11675116 and 12074281), the Jiangsu Distinguished Professor Funding, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the China Postdoctoral Science Foundation (Grant No. 2020M681376). |
|
|
[1] | Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 |
[2] | Martı́n D and Algora C 2004 Semicond. Sci. Technol. 19 1040 |
[3] | Nagashima T, Okumura K and Yamaguchi M 2007 AIP Conf. Proc. 890 174 |
[4] | Fraas L M and Ferguson L G 2000 US Patent 6091018 |
[5] | Sulima O V and Bett A W 2001 Sol. Energy Mater. Sol. Cells 66 533 |
[6] | Wu C, Neuner I B, John J, Milder A, Zollars B, Savoy S and Shvets G 2012 J. Opt. 14 024005 |
[7] | Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H, Jensen K F, Senkevich J J, Joannopoulos J D, Soljačić M and Celanovic I 2013 Proc. Natl. Acad. Sci. USA 110 5309 |
[8] | Liao T, Cai L, Zhao Y and Chen J 2016 J. Power Sources 306 666 |
[9] | Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M and Fan S 2017 Nano Energy 41 344 |
[10] | Tervo E, Bagherisereshki E and Zhang Z M 2018 Front. Energy 12 5 |
[11] | Svetovoy V B, Van Zwol P J and Chevrier J 2012 Phys. Rev. B 85 155418 |
[12] | Ilic O, Jablan M, Joannopoulos J D, Celanovic I and Soljačić M 2012 Opt. Express 20 A366 |
[13] | Svetovoy V B and Palasantzas G 2014 Phys. Rev. Appl. 2 034006 |
[14] | Basu S, Yang Y and Wang L 2015 Appl. Phys. Lett. 106 033106 |
[15] | Narayanaswamy A and Chen G 2003 Appl. Phys. Lett. 82 3544 |
[16] | Laroche M, Carminati R and Greffet J J 2006 J. Appl. Phys. 100 063704 |
[17] | Park K, Basu S, King W P and Zhang Z M 2008 J. Quant. Spectrosc. Radiat. Transfer 109 305 |
[18] | Bright T J, Wang L P and Zhang Z M 2014 J. Heat Transfer 136 062701 |
[19] | Molesky S and Jacob Z 2015 Phys. Rev. B 91 205435 |
[20] | St-Gelais R, Bhatt G R, Zhu L, Fan S and Lipson M 2017 ACS Nano 11 3001 |
[21] | Jiang J H and Imry Y 2018 Phys. Rev. B 97 125422 |
[22] | Papadakis G T, Buddhiraju S, Zhao Z, Zhao B and Fan S 2020 Nano Lett. 20 1654 |
[23] | Messina R and Ben-Abdallah P 2013 Sci. Rep. 3 1383 |
[24] | Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, H J, Hillenbrand R and Koppens F H L 2015 Nat. Mater. 14 421 |
[25] | Zhao B and Zhang Z M 2017 J. Heat Transfer 139 022701 |
[26] | Zhao B, Guizal B, Zhang Z M, Fan S and Antezza M 2017 Phys. Rev. B 95 245437 |
[27] | Shi K, Bao F and He S 2017 ACS Photon. 4 971 |
[28] | Wang R, Lu J and Jiang J H 2019 Phys. Rev. Appl. 12 044038 |
[29] | Polder D and Van H M 1971 Phys. Rev. B 4 3303 |
[30] | Pendry J B 1999 J. Phys.: Condens. Matter 11 6621 |
[31] | Mulet J P, Joulain K, Carminati R and Greffet J J 2002 Nanoscale Microscale Thermophys. Eng. 6 209 |
[32] | Whittaker D M and Culshaw I S 1999 Phys. Rev. B 60 2610 |
[33] | Zhang Z M 2007 Nano/Microscale Heat Transfer (New York: McGraw-Hill) |
[34] | Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia: Scientific Research) |
[35] | Shur M S 1996 Handbook Series On Semiconductor Parameters (Singapore: World Scientific) vol 1 |
[36] | Lim M, Jin S, Lee S S and Lee B J 2015 Opt. Express 23 A240 |
[37] | Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172 |
[38] | Geick R, Perry C H and Rupprecht G 1966 Phys. Rev. 146 543 |
[39] | Caldwell J D, Kretinin A V, Chen Y, Giannini V, Fogler M M, Francescato Y, Ellis C T, Tischler J G, Woods C R, Giles A J, Hong M, Watanabe K, Taniguchi T, Maier S A and Novoselov K S 2014 Nat. Commun. 5 5221 |
[40] | Vakil A and Engheta N 2011 Science 332 1291 |
[41] | Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004 |
[42] | Yang T R, Cheng Y, Wang J B and Feng Z C 2006 Thin Solid Films 498 158 |
[43] | Jacob Z 2014 Nat. Mater. 13 1081 |
[44] | Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M and Atwater H 2014 Nano Lett. 14 3876 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|