Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 024201    DOI: 10.1088/0256-307X/38/2/024201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells
Rongqian Wang1*, Jincheng Lu1,2, and Jian-Hua Jiang1*
1School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
2Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Cite this article:   
Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang 2021 Chin. Phys. Lett. 38 024201
Download: PDF(1025KB)   PDF(mobile)(1016KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Near-field thermophotovoltaic systems functioning at 400–900 K based on graphene-hexagonal-boron-nitride heterostructures and thin-film InSb p–n junctions are investigated theoretically. The performances of two near-field systems with different emitters are examined carefully. One near-field system consists of a graphene-hexagonal-boron-nitride-graphene sandwiched structure as the emitter, while the other system has an emitter made of the double graphene-hexagonal-boron-nitride heterostructure. It is shown that both systems exhibit higher output power density and energy efficiency than the near-field system based on mono graphene-hexagonal-boron-nitride heterostructure. The optimal output power density of the former device can reach $1.3\times10^{5}$ W/m$^{2}$, while the optimal energy efficiency can be as large as $42\%$ of the Carnot efficiency. We analyze the underlying physical mechanisms that lead to the excellent performances of the proposed near-field thermophotovoltaic systems. Our results are valuable toward high-performance moderate temperature thermophotovoltaic systems as appealing thermal-to-electric energy conversion (waste heat harvesting) devices.
Received: 12 October 2020      Published: 27 January 2021
PACS:  05.70.-a (Thermodynamics)  
  44.40.+a (Thermal radiation)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  78.67.-n}  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11675116 and 12074281), the Jiangsu Distinguished Professor Funding, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the China Postdoctoral Science Foundation (Grant No. 2020M681376).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/024201       OR      http://cpl.iphy.ac.cn/Y2021/V38/I2/024201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rongqian Wang
Jincheng Lu
and Jian-Hua Jiang
[1] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[2] Martı́n D and Algora C 2004 Semicond. Sci. Technol. 19 1040
[3] Nagashima T, Okumura K and Yamaguchi M 2007 AIP Conf. Proc. 890 174
[4]Fraas L M and Ferguson L G 2000 US Patent 6091018
[5] Sulima O V and Bett A W 2001 Sol. Energy Mater. Sol. Cells 66 533
[6] Wu C, Neuner I B, John J, Milder A, Zollars B, Savoy S and Shvets G 2012 J. Opt. 14 024005
[7] Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H, Jensen K F, Senkevich J J, Joannopoulos J D, Soljačić M and Celanovic I 2013 Proc. Natl. Acad. Sci. USA 110 5309
[8] Liao T, Cai L, Zhao Y and Chen J 2016 J. Power Sources 306 666
[9] Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M and Fan S 2017 Nano Energy 41 344
[10] Tervo E, Bagherisereshki E and Zhang Z M 2018 Front. Energy 12 5
[11] Svetovoy V B, Van Zwol P J and Chevrier J 2012 Phys. Rev. B 85 155418
[12] Ilic O, Jablan M, Joannopoulos J D, Celanovic I and Soljačić M 2012 Opt. Express 20 A366
[13] Svetovoy V B and Palasantzas G 2014 Phys. Rev. Appl. 2 034006
[14] Basu S, Yang Y and Wang L 2015 Appl. Phys. Lett. 106 033106
[15] Narayanaswamy A and Chen G 2003 Appl. Phys. Lett. 82 3544
[16] Laroche M, Carminati R and Greffet J J 2006 J. Appl. Phys. 100 063704
[17] Park K, Basu S, King W P and Zhang Z M 2008 J. Quant. Spectrosc. Radiat. Transfer 109 305
[18] Bright T J, Wang L P and Zhang Z M 2014 J. Heat Transfer 136 062701
[19] Molesky S and Jacob Z 2015 Phys. Rev. B 91 205435
[20] St-Gelais R, Bhatt G R, Zhu L, Fan S and Lipson M 2017 ACS Nano 11 3001
[21] Jiang J H and Imry Y 2018 Phys. Rev. B 97 125422
[22] Papadakis G T, Buddhiraju S, Zhao Z, Zhao B and Fan S 2020 Nano Lett. 20 1654
[23] Messina R and Ben-Abdallah P 2013 Sci. Rep. 3 1383
[24] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, H J, Hillenbrand R and Koppens F H L 2015 Nat. Mater. 14 421
[25] Zhao B and Zhang Z M 2017 J. Heat Transfer 139 022701
[26] Zhao B, Guizal B, Zhang Z M, Fan S and Antezza M 2017 Phys. Rev. B 95 245437
[27] Shi K, Bao F and He S 2017 ACS Photon. 4 971
[28] Wang R, Lu J and Jiang J H 2019 Phys. Rev. Appl. 12 044038
[29] Polder D and Van H M 1971 Phys. Rev. B 4 3303
[30] Pendry J B 1999 J. Phys.: Condens. Matter 11 6621
[31] Mulet J P, Joulain K, Carminati R and Greffet J J 2002 Nanoscale Microscale Thermophys. Eng. 6 209
[32] Whittaker D M and Culshaw I S 1999 Phys. Rev. B 60 2610
[33]Zhang Z M 2007 Nano/Microscale Heat Transfer (New York: McGraw-Hill)
[34]Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia: Scientific Research)
[35]Shur M S 1996 Handbook Series On Semiconductor Parameters (Singapore: World Scientific) vol 1
[36] Lim M, Jin S, Lee S S and Lee B J 2015 Opt. Express 23 A240
[37] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172
[38] Geick R, Perry C H and Rupprecht G 1966 Phys. Rev. 146 543
[39] Caldwell J D, Kretinin A V, Chen Y, Giannini V, Fogler M M, Francescato Y, Ellis C T, Tischler J G, Woods C R, Giles A J, Hong M, Watanabe K, Taniguchi T, Maier S A and Novoselov K S 2014 Nat. Commun. 5 5221
[40] Vakil A and Engheta N 2011 Science 332 1291
[41] Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004
[42] Yang T R, Cheng Y, Wang J B and Feng Z C 2006 Thin Solid Films 498 158
[43] Jacob Z 2014 Nat. Mater. 13 1081
[44] Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M and Atwater H 2014 Nano Lett. 14 3876
Related articles from Frontiers Journals
[1] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 024201
[2] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 024201
[3] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 024201
[4] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 024201
[5] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 024201
[6] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 024201
[7] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 024201
[8] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 024201
[9] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 024201
[10] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 024201
[11] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 024201
[12] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 024201
[13] LIU Hui, HOU De-Fu, LI Jia-Rong. Shear Viscosity to Non-Equilibrium Entropy Density Ratio of Hot Quark--Gluon Plasma at Finite Chemical Potential[J]. Chin. Phys. Lett., 2007, 24(5): 024201
[14] CHEN Jiang-Xing, JIAO Zheng-Kuan. Mode-Locking Behaviour in Driven Colloids with Random Pinning[J]. Chin. Phys. Lett., 2007, 24(4): 024201
[15] SUN Qiang, ZHENG Hai-Fei. Liquid Water Structure from Anomalous Density under Ambient Condition[J]. Chin. Phys. Lett., 2006, 23(11): 024201
Viewed
Full text


Abstract