Chin. Phys. Lett.  2021, Vol. 38 Issue (12): 123301    DOI: 10.1088/0256-307X/38/12/123301
ATOMIC AND MOLECULAR PHYSICS |
Retrieval of Angle-Dependent Strong-Field Ionization by Using High Harmonics Generated from Aligned N$_{2}$ Molecules
Xiaoli Guo1, Cheng Jin2*, Ziqiang He1, Song-Feng Zhao3, Xiao-Xin Zhou4, and Ya Cheng1,5,6*
1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
2Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
3College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
4Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
5Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
6Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Cite this article:   
Xiaoli Guo, Cheng Jin, Ziqiang He et al  2021 Chin. Phys. Lett. 38 123301
Download: PDF(1019KB)   PDF(mobile)(1150KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a method to retrieve the angle-dependent strong-field ionization of highest occupied molecular orbital (HOMO) from high-order harmonic generation (HHG) of aligned molecules. This method is based on the single-molecule quantitative rescattering model with known alignment distribution and photo-recombination cross sections of fixed-in-space molecules. With the macroscopic HHG of aligned N$_{2}$ molecules, we show that angle-dependent ionization of HOMO can be successfully retrieved at both low and high degrees of alignment. We then show that the error in the retrieved angular dependence of ionization becomes larger if the uncertainty in the alignment distribution is introduced in the retrieval procedure. We also examine that the retrieved ionization of HOMO is much deviated from the accurate one if the intensity of probe laser becomes higher such that inner HOMO-1 can contribute to HHG.
Received: 18 September 2021      Editors' Suggestion Published: 12 November 2021
PACS:  33.15.-e (Properties of molecules)  
  33.80.Eh (Autoionization, photoionization, and photodetachment)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  72.20.Ht (High-field and nonlinear effects)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11774175, 91950102, 11834004, and 91850209), the National Key Research and Development Program of China (Grant No. 2018YFB0504400), the Science and Technology Commission of Shanghai Municipality (Grant No. 18DZ1112700), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16030300), and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH010).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/12/123301       OR      https://cpl.iphy.ac.cn/Y2021/V38/I12/123301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoli Guo
Cheng Jin
Ziqiang He
Song-Feng Zhao
Xiao-Xin Zhou
and Ya Cheng
[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[2] Baker S, Robinson J S, Haworth C A, Teng H, Smith R A, Chirila C C, Lein M, Tisch J W G, and Marangos J P 2006 Science 312 424
[3] Li W, Zhou X, Lock R, Patchkovskii S, Stolow A, Kapteyn H C, and Murnane M M M 2008 Science 322 1207
[4] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D M, Corkum P, and Ivanov M 2009 Nature 460 972
[5] Wörner H J, Bertrand J B, Kartashov D V, Corkum P B, and Villeneuve D M 2010 Nature 466 604
[6] Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V, Mével E, Constant E, Corkum P B, and Villeneuve D M 2011 Science 334 208
[7] Krause J L, Schafer K J, and Kulander K C 1992 Phys. Rev. Lett. 68 3535
[8] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[9] Lewenstein M, Ph B, Yu I M, L'Huillier A, and Corkum P B 1994 Phys. Rev. A 49 2117
[10] He L X, Lan P F, Le A T, Wang B N, Wang B C, Zhu X S, Lu P X, and Lin C D 2018 Phys. Rev. Lett. 121 163201
[11] Ren X, Makhija V, Le A T, Troß J, Mondal S, Jin C, Kumarappan V, and Trallero-Herrero C 2013 Phys. Rev. A 88 043421
[12] Rupenyan A, Kraus P M, Schneider J, and Wörner H J 2013 Phys. Rev. A 87 033409
[13] He Y, He L, Lan P, Wang B, Li L, Zhu X, Cao W, and Lu P 2019 Phys. Rev. A 99 053419
[14] Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D, Dong W H, Song X H, and Yang W F 2021 Chin. Phys. Lett. 38 063201
[15] Shao J, Zhang C P, Jia J C, Ma J L, and Miao X Y 2019 Chin. Phys. Lett. 36 054203
[16] Brennecke S and Lein M 2018 J. Phys. B 51 094005
[17] Watson J B, Sanpera A, Lappas D G, Knight P L, and Burnett K 1997 Phys. Rev. Lett. 78 1884
[18] Baier S, Becker A, and Plaja L 2008 Phys. Rev. A 78 013409
[19] Timmers H, Li Z, Shivaram N, Santra R, Vendrell O, and Sandhu A 2014 Phys. Rev. Lett. 113 113003
[20] Wolter B, Pullen M G, Le A T, Baudisch M, Doblhoff-Dier K, Senftleben A, Hemmer M, Schröter C D, Ullrich J, Pfeifer T, Moshammer R, Gräfe S, Vendrell O, Lin C D, and Biegert J 2016 Science 354 308
[21] Krečinić F, Wopperer P, Frusteri B, Brauße F, Brisset J G, De Giovannini U, Rubio A, Rouzée A, and Vrakking M J J 2018 Phys. Rev. A 98 041401(R)
[22] Rouzée A, Harvey A G, Kelkensberg F, Brambila D, WK S, Gademann G, Smirnova O, and Vrakking M J J 2014 J. Phys. B 47 124017
[23] Li W K, Lei Y, Li X et al. 2021 Chin. Phys. Lett. 38 053202
[24] Li F, Yang Y J, Chen J et al. 2020 Chin. Phys. Lett. 37 113201
[25] Xu L and Fu L F 2019 Chin. Phys. Lett. 36 043202
[26] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, and Krausz F 2010 Nature 466 739
[27] Wirth A, Hassan M T, Grguras I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, and Goulielmakis E 2011 Science 334 195
[28] Boguslavskiy A, Mikosch J, Gijsbertsen A, Spanner M, Patchkovskii S, Gador N, Vrakking M J J, and Stolow A 2012 Science 335 1336
[29] Leone S R, McCurdy C W, Burgdörfer J, Cederbaum L S, Chang Z, Dudovich N, Feist J, Greene C H, Ivanov M, Kienberger R, Keller U, Kling M F, Loh Z H, Pfeifer T, Pfeiffer A N, Santra R, Schafer K, Stolow A, Thumm U, and Vrakking M J J 2014 Nat. Photon. 8 162
[30] Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horny L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, and Wörner H J 2015 Science 350 790
[31] Breidbach J and Cederbaum L S 2005 Phys. Rev. Lett. 94 033901
[32] Cooper B and Averbukh V 2013 Phys. Rev. Lett. 111 083004
[33] Calegari F, Ayuso D, Trabattoni A, Belshaw L, Camillis S D, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martin F, and Nisoli M 2014 Science 346 336
[34] Pavičić D, Lee K F, Rayner D M, Corkum P B, and Villeneuve D M 2007 Phys. Rev. Lett. 98 243001
[35] Alnaser A S, Voss S, Tong X M, Maharjan C M, Ranitovic P, Ulrich B, Osipov T, Shan B, Chang Z, and Cocke C L 2004 Phys. Rev. Lett. 93 113003
[36] Zhao S F, Jin C, Le A T, Jiang T F, and Lin C D 2009 Phys. Rev. A 80 051402
[37] Petretti S, Vanne Y V, Saenz A, Castro A, and Decleva P 2010 Phys. Rev. Lett. 104 223001
[38] Majety V P and Scrinzi A 2015 Phys. Rev. Lett. 115 103002
[39] Lam H V, Yarlagadda S, Venkatachalam A, Wangjam T N, Kushawaha R K, Cheng C, Svihra P, Nomerotski A, Weinacht T, Rolles D, and Kumarappan V 2020 Phys. Rev. A 102 043119
[40] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J, Corkum P, and Villeneuve D M 2004 Nature 432 867
[41] Chang Z, Rundquist A, Wang H, Murnane M M, and Kapteyn H C 1997 Phys. Rev. Lett. 79 2967
[42] Hentschel M, Kienberger R, Ch S, Reider G A, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M, and Krausz F 2001 Nature 414 509
[43] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201
[44] Le A T, Lucchese R R, Tonzani S, Morishita T, and Lin C D 2009 Phys. Rev. A 80 013401
[45] Lin C D, Le A T, Jin C, and Wei H 2018 J. Phys. B 51 104001
[46]Lin C D, Le A T, Jin C, and Wei H 2018 Attosecond and Strong-Field Physics: Principles and Applications (Cambridge: Cambridge University Press) chap 5 p 210
[47] Le A T, Wei H, Jin C, and Lin C D 2016 J. Phys. B 49 053001
[48] Lucchese R R and McKoy V 1982 Phys. Rev. A 26 1406
[49] Lucchese R R, Raseev G, and McKoy V 1982 Phys. Rev. A 25 2572
[50] Lein M, De Nalda R, Heesel E, Hay N, Springate E, Velotta R, Castillejo M, Knight P L, and Marangos J P 2005 J. Mod. Opt. 52 465
[51] Jin C, Le A T, Zhao S F, Lucchese R R, and Lin C D 2010 Phys. Rev. A 81 033421
[52] Jin C, Le A T, and Lin C D 2011 Phys. Rev. A 83 053409
[53] Mairesse Y, Higuet J, Dudovich N, Shafir D, Fabre B, Mével E, Constant E, Patchkovskii S, Walters Z, Ivanov M Y, and Smirnova O 2010 Phys. Rev. Lett. 104 213601
[54] Guo X L, Jin C, He Z Q, Yao J P, XX Z, And C Y 2021 Opt. Express 29 1613
[55] Geissler M, Tempea G, Scrinzi A, Schnürer M, Krausz F, and Brabec T 1999 Phys. Rev. Lett. 83 2930
[56] Priori E, Cerullo G, Nisoli M, Stagira S, De Silvestri S, Villoresi P, Poletto L, Ceccherini P, Altucci C, Bruzzese R, and de Lisio C 2000 Phys. Rev. A 61 063801
[57] Tosa V, Kim H T, Kim I J, and Nam C H 2005 Phys. Rev. A 71 063807
[58] Gaarde M B, Tate J L, and Schafer K J 2008 J. Phys. B 41 132001
[59] Zhou X, Lock R, Wagner N, Li W, Kapteyn H C, and Murnane M M 2009 Phys. Rev. Lett. 102 073902
[60] Tong X M, Zhao Z X, and Lin C D 2002 Phys. Rev. A 66 033402
[61] Zhao S F, Jin C, Le A T, Jiang T F, and Lin C D 2010 Phys. Rev. A 81 033423
Viewed
Full text


Abstract