Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 111401    DOI: 10.1088/0256-307X/38/11/111401
Unambiguously Resolving the Potential Neutrino Magnetic Moment Signal at Large Liquid Scintillator Detectors
Ziping Ye1, Feiyang Zhang2,3, Donglian Xu1,2,3*, and Jianglai Liu1,2,3
1Tsung-Dao Lee Institute, Shanghai 200240, China
2INPAC and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3Shanghai Laboratory for Particle Physics and Cosmology, Key Laboratory for Particle Physics and Cosmology (MOE), Shanghai 200240, China
Cite this article:   
Ziping Ye, Feiyang Zhang, Donglian Xu et al  2021 Chin. Phys. Lett. 38 111401
Download: PDF(444KB)   PDF(mobile)(557KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Non-vanishing electromagnetic properties of neutrinos have been predicted by many theories beyond the Standard Model, and an enhanced neutrino magnetic moment can have profound implications for fundamental physics. The XENON1T experiment recently detected an excess of electron recoil events in the 1–7 keV energy range, which can be compatible with solar neutrino magnetic moment interaction at a most probable value of $\mu_{\nu} = 2.1 \times 10^{-11} \mu_{\scriptscriptstyle {\rm B}}$. However, tritium backgrounds or solar axion interaction in this energy window are equally plausible causes. Upcoming multi-tonne noble liquid detectors will test these scenarios more in depth, but will continue to face similar ambiguity. We report a unique capability of future large liquid scintillator detectors to help resolve the potential neutrino magnetic moment scenario. With $O$(100) kton$\cdot$year exposure of liquid scintillator to solar neutrinos, a sensitivity of $\mu_{\nu} < 10^{-11} \mu_{\scriptscriptstyle {\rm B}}$ can be reached at an energy threshold greater than 40 keV, where no tritium or solar axion events but only neutrino magnetic moment signal is still present.
Received: 28 July 2021      Editors' Suggestion Published: 27 October 2021
  14 (Properties of specific particles )  
  14.60.-z (Leptons)  
  14.60.St (Non-standard-model neutrinos, right-handed neutrinos, etc.)  
Fund: Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA10010800). DLX and ZPY are grateful to the Double First Class Start-up Fund (WF220442603) provided by Shanghai Jiao Tong University. DLX also thanks support from the CAS Center for Excellence in Particle Physics (CCEPP).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Ziping Ye
Feiyang Zhang
Donglian Xu
and Jianglai Liu
[1] Marciano W and Sanda A 1977 Phys. Lett. B 67 303
[2] Lee B W and Shrock R E 1977 Phys. Rev. D 16 1444
[3] Fujikawa K and Shrock R E 1980 Phys. Rev. Lett. 45 963
[4] Fukugita M and Yanagida T 1987 Phys. Rev. Lett. 58 1807
[5] Babu K S and Mohapatra R N 1989 Phys. Rev. Lett. 63 228
[6] Ma E 1998 Phys. Rev. Lett. 81 1171
[7] Giunti C and Studenikin A 2009 Phys. At. Nucl. 72 2089
[8] Bell N F, Cirigliano V, Ramsey-Musolf M J, Vogel P, and Wise M B 2005 Phys. Rev. Lett. 95 151802
[9] Bell N F, Gorchtein M, Ramsey-Musolf M J, Vogel P, and Wang P 2006 Phys. Lett. B 642 377
[10] Reines F, Gurr H, and Sobel H 1976 Phys. Rev. Lett. 37 315
[11] Beda A, Brudanin V, Egorov V, Medvedev D, Pogosov V, Shirchenko M, and Starostin A 2012 Adv. High Energy Phys. 2012 350150
[12] Agostini M, Altenmüller K, Appel S, Atroshchenko V, Bagdasarian Z et al. 2017 Phys. Rev. D 96 091103
[13] Lattimer J M and Cooperstein J 1988 Phys. Rev. Lett. 61 23
[14] Miranda O, Rashba T I, Rez A, and Valle J 2004 Phys. Rev. Lett. 93 051304
[15] Dı́az S A, Schröder K P, Zuber K, Jack D, and Barrios E E B 2019 arXiv:1910.10568 [astro-ph.SR]
[16] Brdar V, Greljo A, Kopp J, and Opferkuch T 2021 J. Cosmol. Astropart. Phys. 2021(01) 039
[17] Aprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L et al. 2020 Phys. Rev. D 102 072004
[18] An F, An G, An Q, Antonelli V, Baussan E, Beacom J et al. 2016 J. Phys. G 43 030401
[19] Wurm M, Beacom J F, Bezrukov L B et al. (LENA collaboration) 2012 Astropart. Phys. 35 685
[20] Aprile E, Aalbers J, Agostini F, Alfonsi M, Althueser L, Amaro F D, Antochi V C, Angelino E, Angevaare J R, and Arneodo F 2020 J. Cosmol. Astropart. Phys. 2020(11) 031
[21] Aristizabal S D, Branada R, Miranda O G, and Sanchez G G 2020 J. High Energy Phys. 2020(12) 178
[22] Akerib D S et al. 2021 arXiv:2101.08753 [astro-ph.IM]
[23] Akerib D S et al. (LZ collaboration) 2021 arXiv:2102.11740 [hep-ex]
[24] Zhang H et al. (PandaX collaboration) 2019 Sci. Chin. Phys. Mech. & Astron. 62 31011
[25] Ni K, Qi J, Shockley E, and Wei Y 2021 Universe 7 7
[26] Bennett G W, Bousquet B, Brown H N et al. (Muon g-2 Collaboration) 2006 Phys. Rev. D 73 072003
[27] Abi B, Albahri T, Al-Kilani S et al. (Muon g-2 Collaboration) 2021 Phys. Rev. Lett. 126 141801
[28] Babu K S, Jana S, Lindner M, and K V P 2021 arXiv:2104.03291 [hep-ph]
[29] Redondo J 2013 J. Cosmol. Astropart. Phys. 2013 008
[30] Moriyama S 1995 Phys. Rev. Lett. 75 3222
[31] Dimopoulos S, Frieman J, Lynn B W, and Starkman G D 1986 Phys. Lett. B 179 223
[32] Vilain P, Wilquet G, Beyer R et al. 1993 Phys. Lett. B 302 351
[33] Auerbach L, Burman R, Caldwell D, Church E, Donahue J et al. 2001 Phys. Rev. D 63 112001
[34] Bola N A, Miranda O, Palazzo A, Tórtola M A, and Valle J W 2009 Phys. Rev. D 79 113012
[35] Tomalak O and Hill R J 2020 Phys. Rev. D 101 033006
[36] Vogel P and Engel J 1989 Phys. Rev. D 39 3378
[37] Wong H T and Li H B 2011 Mod. Phys. Lett. A 20 1103
[38] Cleveland B T, Daily T, Davis J R, Distel J R, Lande K, Lee C, Wildenhain P S, and Ullman J 1998 Astrophys. J. 496 505
[39] Ahmad Q R, Allen R C, Andersen T C et al. (SNO Collaboration) 2001 Phys. Rev. Lett. 87 071301
[40] Fukuda S, Fukuda Y, Ishitsuka M et al. 2001 Phys. Rev. Lett. 86 5656
[41] Agostini M, Altenmüller K, Appel S et al. 2018 Nature 562 505
[42] The Borexino Collaboration 2020 Nature 587 577
[43] Bahcall J N, Huebner W F, Lubow S H, Parker P D, and Ulrich R K 1982 Rev. Mod. Phys. 54 767
[44] Bahcall J N and Pinsonneault M 1992 Rev. Mod. Phys. 64 885
[45] Bahcall J N, Serenelli A M, and Basu S 2006 Astrophys. J. Suppl. Ser. 165 400
[46] Vinyoles N, Serenelli A M, Villante F L, Basu S, Bergström J, Gonzalez-Garcia M, Maltoni M, Pe N G C, and Song N 2017 Astrophys. J. 835 202
[47]John Bahcall's homepage: jnb/, accessed: 2020-12-20
[48] Alimonti G, Angloher G, Arpesella C, Balata M, Bellini G et al. 1998 Phys. Lett. B 422 349
[49] Bellini G, Benziger J, Bick D et al. 2014 Nature 512 383
[50] Li X B, Xiao H L, Cao J, Li J, Ruan X C, and Heng Y K 2011 Chin. Phys. C 35 1026
[51] Abusleme A, Adam T, Ahmad S, Aiello S, Akram M et al. 2020 arXiv:2006.11760 [hep-ex]
[52] Zhang K, He M, Li W, and Xu J 2018 Radiat. Detect. Technol. Methods 2 13
[53] Abusleme A, Adam T, Ahmad S, Ahmed R, Aiello S et al. 2021 J. High Energy Phys. 2021(03) 4
[54]NEUTRINO2020 poster, /nu2020postersession/pdf/posterPDF-370.pdf, accessed: 2021-1-19
[55] Cochran W G 1952 Ann. Math. Stat. 23 315
[56]NEUTRINO2020 poster, /nu2020postersession/pdf/posterPDF-129.pdf, accessed: 2021-1-19
[57] Andringa S, Arushanova E, Asahi S et al. (SNO+ Collaboration) 2016 Adv. High Energy Phys. 2016 6194250
[58] Kastens L W, Cahn S B, Manzur A, and McKinsey D N 2009 Phys. Rev. C 80 045809
[59] Manalaysay A, Undagoitia T M, Askin A, Baudis L, Behrens A, Ferella A D, Kish A, Lebeda O, Santorelli R, and Vénos D 2010 Rev. Sci. Instrum. 81 073303
Related articles from Frontiers Journals
[1] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 111401
[2] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 111401
[3] Yue Wang, Xiaoxiang Yu, Xiao Wan, Nuo Yang, and Chengcheng Deng. Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale[J]. Chin. Phys. Lett., 2021, 38(9): 111401
[4] Ning Li, Zhi-Feng Sun, Xiang Liu, and Shi-Lin Zhu. Perfect $DD^*$ Molecular Prediction Matching the $T_{\rm cc}$ Observation at LHCb[J]. Chin. Phys. Lett., 2021, 38(9): 111401
[5] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 111401
[6] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 111401
[7] Yanting Li , Bixia Gao , Qiyu Wang , Juan Zhang , and Qiaoni Chen. Coexistence of Charge Order and Antiferromagnetic Order in an Extended Periodic Anderson Model[J]. Chin. Phys. Lett., 2021, 38(8): 111401
[8] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 111401
[9] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 111401
[10] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 111401
[11] Si-Xue Qin and Craig D. Roberts. Resolving the Bethe–Salpeter Kernel[J]. Chin. Phys. Lett., 2021, 38(7): 111401
[12] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 111401
[13] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 111401
[14] Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang, Junwei Liu, and Hua Jiang. Magnus Hall Effect in Two-Dimensional Materials[J]. Chin. Phys. Lett., 2021, 38(5): 111401
[15] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 111401
Full text