Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 110303    DOI: 10.1088/0256-307X/38/11/110303
GENERAL |
Improved Superconducting Qubit State Readout by Path Interference
Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang*, and Luming Duan*
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
Cite this article:   
Zhiling Wang, Zenghui Bao, Yukai Wu  et al  2021 Chin. Phys. Lett. 38 110303
Download: PDF(1352KB)   PDF(mobile)(2355KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High fidelity single shot qubit state readout is essential for many quantum information processing protocols. In superconducting quantum circuit, the qubit state is usually determined by detecting the dispersive frequency shift of a microwave cavity from either transmission or reflection. We demonstrate the use of constructive interference between the transmitted and reflected signal to optimize the qubit state readout, with which we find a better resolved state discrimination and an improved qubit readout fidelity. As a simple and convenient approach, our scheme can be combined with other qubit readout methods based on the discrimination of cavity photon states to further improve the qubit state readout.
Received: 24 September 2021      Editors' Suggestion Published: 27 October 2021
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.-j (Superconducting devices)  
  03.67.-a (Quantum information)  
Fund: Supported by the Beijing Academy of Quantum Information Science, the Frontier Science Center for Quantum Information of the Ministry of Education of China through the Tsinghua University Initiative Scientific Research Program, the National Natural Science Foundation of China (Grant No. 11874235), the National Key Research and Development Program of China (Grant Nos. 2016YFA0301902 and 2020YFA0309500), Y.K.W. acknowledges support from Shuimu Tsinghua Scholar Program and the International Postdoctoral Exchange Fellowship Program.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/11/110303       OR      http://cpl.iphy.ac.cn/Y2021/V38/I11/110303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiling Wang
Zenghui Bao
Yukai Wu 
Yan Li 
Cheng Ma 
Tianqi Cai 
Yipu Song 
Hongyi Zhang
and Luming Duan
[1] DiVincenzo D P 2000 Fortschr. Phys. 48 771
[2] DiVincenzo D P 2009 Phys. Scr. T137 014020
[3] Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fedorov A, and Wallraff A 2013 Nature 500 319
[4] Barends R, Kelly J, Megrant A et al. 2014 Nature 508 500
[5] Kelly J, Barends R, Fowler A G et al. 2015 Nature 519 66
[6] Johnson J E, Macklin C, Slichter D H, Vijay R, Weingarten E B, Clarke J, and Siddiqi I 2012 Phys. Rev. Lett. 109 050506
[7] Ristè D, van Leeuwen J G, Ku H S, Lehnert K W, and DiCarlo L 2012 Phys. Rev. Lett. 109 050507
[8] Geerlings K, Leghtas Z, Pop I M, Shankar S, Frunzio L, Schoelkopf R J, Mirrahimi M, and Devoret M H 2013 Phys. Rev. Lett. 110 120501
[9] Magnard P, Kurpiers P, Royer B, Walter T, Besse J C, Gasparinetti S, Pechal M, Heinsoo J, Storz S, Blais A, and Wallraff A 2018 Phys. Rev. Lett. 121 060502
[10] Arute F, Arya K, Babbush R et al. 2019 Nature 574 505
[11] Kandala A, Temme K, Córcoles A D, Mezzacapo A, Chow J M, and Gambetta J M 2019 Nature 567 491
[12] Tannu S S and Qureshi M K 2019 Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS '19 (Association for Computing Machinery, New York, NY, USA) pp 987–999
[13]Tannu S S and Qureshi M K 2019 Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO '52 (Association for Computing Machinery, New York, NY, USA) pp 279–290
[14] Lupaşcu A, Saito S, Picot T, de Groot P C, Harmans C J P M, and Mooij J E 2007 Nat. Phys. 3 119
[15] Picot T, Schouten R, Harmans C J P M, and Mooij J E 2010 Phys. Rev. Lett. 105 040506
[16] Nakajima T, Noiri A, Yoneda J, Delbecq M R, Stano P, Otsuka T, Takeda K, Amaha S, Allison G, Kawasaki K, Ludwig A, Wieck A D, Loss D, and Tarucha S 2019 Nat. Nanotechnol. 14 555
[17] Raha M, Chen S, Phenicie C M, Ourari S, Dibos A M, and Thompson J D 2020 Nat. Commun. 11 1605
[18] Ristè D, Poletto S, Huang M Z, Bruno A, Vesterinen V, Saira O P, and DiCarlo L 2015 Nat. Commun. 6 6983
[19] Hacohen-Gourgy S, Martin L S, Flurin E, Ramasesh V V, Whaley K B, and Siddiqi I 2016 Nature 538 491
[20] Blais A, Huang R S, Wallraff A, Girvin S M, and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[21] Mallet F, Ong F R, Palacios-Laloy A, Nguyen F, Bertet P, Vion D, and Esteve D 2009 Nat. Phys. 5 791
[22] Walter T, Kurpiers P, Gasparinetti S et al. 2017 Phys. Rev. Appl. 7 054020
[23] Wang X, Miranowicz A, and Nori F 2019 Phys. Rev. Appl. 12 064037
[24] Clerk A, Girvin S, and Stone A D 2003 Phys. Rev. B 67 165324
[25] Clerk A A, Devoret M H, Girvin S M, Marquardt F, and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155
[26] Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[27] Ikonen J, Goetz J, Ilves J et al. 2019 Phys. Rev. Lett. 122 080503
[28] Touzard S, Kou A, Frattini N E et al. 2019 Phys. Rev. Lett. 122 080502
[29] Reed M D, DiCarlo L, Johnson B R et al. 2010 Phys. Rev. Lett. 105 173601
[30] Boissonneault M, Gambetta J M, and Blais A 2010 Phys. Rev. Lett. 105 100504
[31]Gao J and Zmuidzinas J 2008 The Physics of Superconducting Microwave Resonators, CIT theses (California Institute of Technology)
[32] Bradley R 2018 Proceedings of the 2nd International Workshop (Part of the Springer Proceedings in Physics book series, SPPHY) vol 211 p 39
[33] Kokkoniemi R, Ollikainen T, Lake R E et al. 2017 Sci. Rep. 7 14713
[34] Zhang J, Li T, Kokkoniemi R et al. 2020 AIP Adv. 10 065128
[35] Naaman O, Strong J A, Ferguson D G et al. 2017 J. Appl. Phys. 121 073904
[36] Eder P, Ramos T, Goetz J et al. 2018 Supercond. Sci. Technol. 31 115002
[37] Pogorzalek S, Fedorov K G, Xu M et al. 2019 Nat. Commun. 10 2604
[38] Probst S, Song F B, Bushev P A et al. 2015 Rev. Sci. Instrum. 86 024706
[39] Krantz P, Bengtsson A, Simoen M et al. 2016 Nat. Commun. 7 11417
[40] Krantz P, Kjaergaard M, Yan F et al. 2019 Appl. Phys. Rev. 6 021318
[41] Kjaergaard M, Schwartz M E, Braumüller J et al. 2020 Annu. Rev. Condens. Matter Phys. 11 369
[42] Place A P M, Rodgers L V H, Mundada P et al. 2021 Nat. Commun. 12 1779
Related articles from Frontiers Journals
[1] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 110303
[2] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 110303
[3] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 110303
[4] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 110303
[5] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 110303
[6] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 110303
[7] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 110303
[8] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 110303
[9] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 110303
[10] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 110303
[11] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 110303
[12] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 110303
[13] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 110303
[14] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 110303
[15] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 110303
Viewed
Full text


Abstract