Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 016801    DOI: 10.1088/0256-307X/38/1/016801
Photonic Thermal Rectification with Composite Metamaterials
Ogundare Rasheed Toyin1†, Wenxuan Ge1†, and Lei Gao1,2*
1College of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
2Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
Cite this article:   
Ogundare Rasheed Toyin, Wenxuan Ge, and Lei Gao 2021 Chin. Phys. Lett. 38 016801
Download: PDF(1331KB)   PDF(mobile)(1325KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate strong photonic thermal rectification effect between polar dielectrics plate and the composite metamaterials containing nonspherical polar dielectric nanoparticles with small volume fractions. Thermal rectification efficiency is found to be adjusted by the volume fractions and the nanoparticles' shape, and it can be as large as 80% when the polar dielectric nanoparticles are spherical in shape and are in the dilute limit with the volume fraction $f=0.01$. Physically, there exists strong electromagnetic coupling between the surface phonon polariton mode of polar dielectrics plate and the localized surface phonon polariton mode around polar dielectric nanoparticles. The results provide alternative new freedom for regulating energy flow and heat rectification efficiency in the near field, and may be helpful for design of multiparameter adjustable thermal diodes.
Received: 26 September 2020      Published: 06 January 2021
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11774252 and 92050104), the Qing Lan Project, and the PAPD of Jiangsu Higher Education Institutions.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Ogundare Rasheed Toyin
Wenxuan Ge
and Lei Gao
[1] Prod'homme H, Ordonez-Miranda J, Ezzahri Y, Drevillon J and Joulain K 2018 J. Quant. Spectrosc. Radiat. Transfer 210 52
[2] Ghanekar A, Tian Y P, Ricci M, Zhang S, Gregory O and Zheng Y 2018 Opt. Express 26 A209
[3] Iizuka H and Fan S H 2014 J. Quant. Spectrosc. Radiat. Transfer 148 156
[4] Xu G, Sun J, Mao H and Pan T 2019 J. Quant. Spectrosc. Radiat. Transfer 232 20
[5] Tang L and Francoeur M 2017 Opt. Express 25 A1043
[6] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843
[7] Wang L P and Zhang Z M 2013 Nanoscale Microscale Thermophys. Eng. 17 337
[8] Wang K Y and Gao L 2020 ES Energy & Environ. 7 12
[9] Philippe B A and Svend-Age B 2014 Phys. Rev. Lett. 112 044301
[10] Lo W C, Wang L and Li B 2008 J. Phys. Soc. Jpn. 77 054402
[11] Lenert A, Bierman D M, Nam Y, Chan W R, Celanovic I, Soljacic M and Wang E N 2014 Nat. Nanotechnol. 9 126
[12] Challener W A, Peng C, Itagi A V, Karns D, Peng W, Peng Y, Yang X, Zhu X, Gokemeijer N J, Hsia Y T, Ju G, Rottmayer R E, Seigler M A and Gage E C 2009 Nat. Photon. 3 220
[13] Ghanekar A, Ricci M, Tian Y P, Gregory O and Zheng Y 2018 Appl. Phys. Lett. 112 241104
[14] Yang Y and Wang L P 2017 J. Quant. Spectrosc. Radiat. Transfer 197 68
[15] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[16] Jia S C, Fu Y, Su Y S and Ma Y G 2018 Opt. Lett. 43 5619
[17] Kasali S O, Ordonez-Miranda J and Joulain K 2020 Int. J. Heat Mass Transfer 154 119739
[18] Whale M D and Cravalho E G 2002 IEEE Trans. Energy Convers. 17 130
[19] Laroche M R, C and Greffet J J 2006 J. Appl. Phys. 100 063704
[20] Park K, Basu S, King W P and Zhang Z M 2008 J. Quant. Spectrosc. Radiat. Transfer 109 305
[21] Otey C R, Lau W T and Fan S 2010 Phys. Rev. Lett. 104 154301
[22] Wang M and Pan N 2008 Mater. Sci. Eng. R 63 1
[23] Balazs A C, Emrick T and Russell T P 2006 Science 314 1107
[24] Krokhin A A, Arriaga J, Gumen L N and Drachev V P 2016 Phys. Rev. B 93 075418
[25] Perez-Rodriguez J E, Pirruccio G and Esquivel-Sirvent R 2019 Phys. Rev. Mater. 3 015201
[26] Kittel A, Wischnath U F, Welker J, Huth O, Rueting F and Biehs S A 2008 Appl. Phys. Lett. 93 193109
[27] Worbes L, Hellmann D and Kittel A 2013 Phys. Rev. Lett. 110 134302
[28] Shen S, Mavrokefalos A, Sambegoro P and Chen G 2012 Appl. Phys. Lett. 100 233114
[29] Guha B, Otey C, Poitras C B, Fan S and Lipson M 2012 Nano Lett. 12 4546
[30]Zhou C, Zharig Y, Yi H and Qu L 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (Rome, Italy 17–20 June 2019) p 2652
[31] Shen S, Narayanaswamy A and Chen G 2009 Nano Lett. 9 2909
[32] Yazmin S E and Esquivel-Sirvent R 2017 Z. Naturforsch. A: Phys. Sci. 72 129
[33] Van Zwol P J, Ranno L and Chevrier J 2012 Phys. Rev. Lett. 108 234301
[34] Jordan T H 2015 Geophys. J. Int. 203 1343
[35]Choy T C 2016 Effective Medium Theory Principles and Applications (Oxford: Oxford Science Publications) vol 2 p 240
[36] Zhu L, Otey C R and Fan S 2013 Phys. Rev. B 88 184301
[37] Gao L and Li Z 2003 J. Phys.: Condens. Matter 15 4397
[38] Gao L, Wan J T K, Yu K W and Li Z Y 2000 J. Phys.: Condens. Matter 12 6825
[39] Joulain K, Ezzahri Y, Drevillon J, Rousseau B and Meneses D D S 2015 Opt. Express 23 A1388
[40] Xu G, Sun J, Mao H and Pan T 2018 J. Appl. Phys. 124 183104
Full text