Chin. Phys. Lett.  2021, Vol. 38 Issue (1): 010301    DOI: 10.1088/0256-307X/38/1/010301
GENERAL |
Classical-Noise-Free Sensing Based on Quantum Correlation Measurement
Ping Wang , Chong Chen , and Ren-Bao Liu*
Department of Physics and The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Cite this article:   
Ping Wang , Chong Chen , and Ren-Bao Liu 2021 Chin. Phys. Lett. 38 010301
Download: PDF(791KB)   PDF(mobile)(982KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum sensing, using quantum properties of sensors, can enhance resolution, precision, and sensitivity of imaging, spectroscopy, and detection. An intriguing question is: Can the quantum nature (quantumness) of sensors and targets be exploited to enable schemes that are not possible for classical probes or classical targets? Here we show that measurement of the quantum correlations of a quantum target indeed allows for sensing schemes that have no classical counterparts. As a concrete example, in the case that the second-order classical correlation of a quantum target could be totally concealed by non-stationary classical noise, the higher-order quantum correlations can single out a quantum target from the classical noise background, regardless of the spectrum, statistics, or intensity of the noise. Hence a classical-noise-free sensing scheme is proposed. This finding suggests that the quantumness of sensors and targets is still to be explored to realize the full potential of quantum sensing. New opportunities include sensitivity beyond classical approaches, non-classical correlations as a new approach to quantum many-body physics, loophole-free tests of the quantum foundation, et cetera.
Received: 09 November 2020      Published: 22 November 2020
Fund: Supported by Hong Kong RGC/GRF Project (Grant No. 14300119).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/1/010301       OR      https://cpl.iphy.ac.cn/Y2021/V38/I1/010301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ping Wang 
Chong Chen 
and Ren-Bao Liu
[1]Feynman R 1965 Feynman Lectures on Physics III chap 21 (New York: Basic Books)
[2] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[3] Pezzè L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005
[4] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[5] Caves C M 1981 Phys. Rev. D 23 1693
[6] Budker D and Romalis M 2007 Nat. Phys. 3 227
[7] Jaklevic R C, Lambe J, Mercereau J E and Silver A H 1965 Phys. Rev. 140 A1628
[8] Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102
[9] Fagaly R L 2006 Rev. Sci. Instrum. 77 101101
[10] Taminiau T H, Wagenaar J J T, van der Sar T, Jelezko F, Dobrovitski V V and Hanson R 2012 Phys. Rev. Lett. 109 137602
[11] Kolkowitz S, Unterreithmeier Q P, Bennett S D and Lukin M D 2012 Phys. Rev. Lett. 109 137601
[12] Zhao N, Honert J, Schmid B, Klas M, Isoya J, Markham M, Twitchen D, Jelezko F, Liu R B, Fedder H and Wrachtrup J 2012 Nat. Nanotechnol. 7 657
[13] Pannetier M, Fermon C, Le Goff G, Simola J and Kerr E 2004 Science 304 1648
[14] Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J and Meriles C A 2013 Nat. Commun. 4 1651
[15] Simon S, Tuvia G, Felix M S, Thomas U, Gerhard W, Christoph M, Jochen S, Boris N, Matthew M, Sebastien P, Jan M, Ilai S, Martin P, Alex R, Liam P M and Fedor J 2017 Science 356 832
[16] Boss J M, Cujia K S, Zopes J and Degen C L 2017 Science 356 837
[17] Pfender M, Wang P, Sumiya H, Onoda S, Yang W, Dasari D B R, Neumann P, Pan X Y, Isoya J, Liu R B and Wrachtrup J 2019 Nat. Commun. 10 594
[18] Cujia K S, Boss J M, Herb K, Zopes J and Degen C L 2019 Nature 571 230
[19] Abobeih M H, Randall J, Bradley C E, Bartling H P, Bakker M A, Degen M J, Markham M, Twitchen D J and Taminiau T H 2019 Nature 576 411
[20] Denk W, Strickler J H and Webb W W 1990 Science 248 73
[21] Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M and Yacoby A 2012 Nat. Nanotechnol. 7 320
[22] Rugar D, Budakian R, Mamin H J and Chui B W 2004 Nature 430 329
[23] Mochalin V N, Shenderova O, Ho D and Gogotsi Y 2012 Nat. Nanotechnol. 7 11
[24] Steinert S, Ziem F, Hall L T, Zappe A, Schweikert M, Götz N, Aird A, Balasubramanian G, Hollenberg L and Wrachtrup J 2013 Nat. Commun. 4 1607
[25] Ajoy A and Cappellaro P 2012 Phys. Rev. A 86 062104
[26] Zhao N, Hu J L, Ho S W, Wan J T K and Liu R B 2011 Nat. Nanotechnol. 6 242
[27] Leggett A J and Garg A 1985 Phys. Rev. Lett. 54 857
[28] Wang P, Chen C, Peng X, Wrachtrup J and Liu R B 2019 Phys. Rev. Lett. 123 050603
[29]Michael M 1983 Principles of High Resolution NMR in Solids (Berlin: Springer-Verlag)
[30] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
[31] Zanardi P 1999 Phys. Lett. A 258 77
[32] Ryogo K and Kazuhisa T 1954 J. Phys. Soc. Jpn. 9 888
[33] Anderson P W 1954 J. Phys. Soc. Jpn. 9 316
[34] Cywiński L, Lutchyn R M, Nave C P and Das Sarma S 2008 Phys. Rev. B 77 174509
[35] Lovchinsky I, Sushkov A O, Urbach E, de Leon N P, Choi S, De Greve K, Evans R, Gertner R, Bersin E, Müller C, McGuinness L, Jelezko F, Walsworth R L, Park H and Lukin M D 2016 Science 351 836
[36] Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, de Fávaro O F, Denisenko A, Sumiya H, Onoda S, Isoya J and Wrachtrup J 2017 Science 357 67
[37] Sushkov A O, Lovchinsky I, Chisholm N, Walsworth R L, Park H and Lukin M D 2014 Phys. Rev. Lett. 113 197601
[38] Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F and Wrachtrup J 2013 Science 339 561
[39] Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D and Rugar D 2013 Science 339 557
[40] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361
Viewed
Full text


Abstract