Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087105    DOI: 10.1088/0256-307X/37/8/087105
Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems
Yingjie Zhang1†, Pengfei Liu1†, Hongyi Sun1†, Shixuan Zhao1, Hu Xu1, and Qihang Liu1,2,3*
1Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
2Guangdong Provincial Key Laboratory for Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China
3Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055, China
Cite this article:   
Yingjie Zhang, Pengfei Liu, Hongyi Sun et al  2020 Chin. Phys. Lett. 37 087105
Download: PDF(3117KB)   PDF(mobile)(4499KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It was recently noted that in certain nonmagnetic centrosymmetric compounds, spin–orbit interactions couple each local sector that lacks inversion symmetry, leading to visible spin polarization effects in the real space, dubbed “hidden spin polarization (HSP)”. However, observable spin polarization of a given local sector suffers interference from its inversion partner, impeding material realization and potential applications of HSP. Starting from a single-orbital tight-binding model, we propose a nontrivial way to obtain strong sector-projected spin texture through the vanishing hybridization between inversion partners protected by nonsymmorphic symmetry. The HSP effect is generally compensated by inversion partners near the ${\varGamma}$ point but immune from the hopping effect around the boundary of the Brillouin zone. We further summarize 17 layer groups that support such symmetry-assisted HSP and identify hundreds of quasi-2D materials from the existing databases by first-principle calculations, among which a group of rare-earth compounds LnIO (Ln = Pr, Nd, Ho, Tm, and Lu) serves as great candidates showing strong Rashba- and Dresselhaus-type HSP. Our findings expand the material pool for potential spintronic applications and shed light on controlling HSP properties for emergent quantum phenomena.
Received: 23 June 2020      Published: 21 July 2020
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11874195), the Guangdong Provincial Key Laboratory of Computational Science and Material Design (Grant No. 2019B030301001), and the Center for Computational Science and Engineering of SUSTech.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yingjie Zhang
Pengfei Liu
Hongyi Sun
Shixuan Zhao
Hu Xu
and Qihang Liu
[1]Winkler R 2003 Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin, Heidelberg: Springer) Vol. 191
[2] Zhang X, Liu Q, Luo J W, Freeman A J and Zunger A 2014 Nat. Phys. 10 387
[3] Liu Q, Zhang X and Zunger A 2015 Phys. Rev. Lett. 114 087402
[4] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[5] Liu Q, Guo Y and Freeman A J 2013 Nano Lett. 13 5264
[6] Liu Q, Zhang X and Zunger A 2016 Phys. Rev. B 93 174119
[7] Riley J M, Mazzola F, Dendzik M, Michiardi M, Takayama T, Bawden L, Granerød C, Leandersson M, Balasubramanian T and Hoesch M 2014 Nat. Phys. 10 835
[8] Yao W, Wang E, Huang H, Deng K, Yan M, Zhang K, Miyamoto K, Okuda T, Li L and Wang Y 2017 Nat. Commun. 8 14216
[9] Razzoli E, Jaouen T, Mottas M L, Hildebrand B, Monney G, Pisoni A, Muff S, Fanciulli M, Plumb N C and Rogalev V A 2017 Phys. Rev. Lett. 118 086402
[10] Wu S L, Sumida K, Miyamoto K, Taguchi K, Yoshikawa T, Kimura A, Ueda Y, Arita M, Nagao M and Watauchi S 2017 Nat. Commun. 8 1919
[11] Gotlieb K, Lin C Y, Serbyn M, Zhang W, Smallwood C L, Jozwiak C, Eisaki H, Hussain Z, Vishwanath A and Lanzara A 2018 Science 362 1271
[12] Wadley P, Howells B, Andrews C et al. 2016 Science 351 587
[13] Das T and Balatsky A V 2013 Nat. Commun. 4 1972
[14] Nakosai S, Tanaka Y and Nagaosa N 2012 Phys. Rev. Lett. 108 147003
[15] Ji H R and Park C H 2017 NPG Asia Mater. 9 e382
[16] Gautier R, Klingsporn J M, Van Duyne R P and Poeppelmeier K R 2016 Nat. Mater. 15 591
[17] Suzuki R, Sakano M, Zhang Y J et al. 2014 Nat. Nanotechnol. 9 611
[18] Cho S, Park J H, Hong J et al. 2018 Phys. Rev. Lett. 121 186401
[19] Wang C, Lian B, Guo X, Mao J, Zhang Z, Zhang D, Gu B L, Xu Y and Duan W 2019 Phys. Rev. Lett. 123 126402
[20] Falson J, Xu Y, Liao M et al. 2020 Science 367 1454
[21] Liu Q, Zhang X, Jin H, Lam K, Im J, Freeman A J and Zunger A 2015 Phys. Rev. B 91 235204
[22] Neupane M, Richardella A, Sánchez-Barriga J et al. 2014 Nat. Commun. 5 3841
[23] Ashton M, Paul J, Sinnott S B and Hennig R G 2017 Phys. Rev. Lett. 118 106101
[24] Mounet N, Gibertini M, Schwaller P et al. 2018 Nat. Nanotechnol. 13 246
[25] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001
[26] Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 81 134508
[27]Dresselhaus M S, Dresselhaus G and Jorio A 2007 Group Theory: Application to the Physics of Condensed Matter (Berlin: Springer)
[28] Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[29] Liu Q and Zunger A 2017 Phys. Rev. X 7 021019
[30] Young S M, Zaheer S, Teo J C, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[31] Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898
[32] Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803
[33] Bzduek T, Wu Q S, Regg A, Sigrist M and Soluyanov A A 2016 Nature 538 75
[34] Liang Q F, Zhou J, Yu R, Wang Z and Weng H 2016 Phys. Rev. B 93 085427
[35] Tao L L and Tsymbal E Y 2018 Nat. Commun. 9 2763
[36] Santos Cottin D, Casula M, Lantz G, Klein Y, Petaccia L, Le Fèvre P, Bertran F, Papalazarou E, Marsi M and Gauzzi A 2016 Nat. Commun. 7 11258
[37] Yuan L, Liu Q, Zhang X, Luo J W, Li S S and Zunger A 2019 Nat. Commun. 10 906
[38] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Liu Q, Zhang X, Waugh J A, Dessau D S and Zunger A 2016 Phys. Rev. B 94 125207
[42] Li P and Appelbaum I 2018 Phys. Rev. B 97 125434
[43] Ivchenko E L and Ganichev S D 2017 arXiv:1710.09223 [cond-mat.mes-hall]
[44] Ma H J H, Huang Z, Annadi A, Zeng S W, Wong L M, Wang S J, Venkatesan T and Ariando 2014 Appl. Phys. Lett. 105 011603
Related articles from Frontiers Journals
[1] Jin-Hua Wang, Ya-Min Quan, Da-Yong Liu, Liang-Jian Zou. Ferromagnetism in Layered Metallic Fe$_{1/4}$TaS$_{2}$ in the Presence of Conventional and Dirac Carriers[J]. Chin. Phys. Lett., 2020, 37(1): 087105
[2] Sailong Ju, Maokun Wu, Hao Yang, Naizhou Wang, Yingying Zhang, Peng Wu, Pengdong Wang, Bo Zhang, Kejun Mu, Yaoyi Li, Dandan Guan, Dong Qian, Feng Lu, Dayong Liu, Wei-Hua Wang, Xianhui Chen, Zhe Sun. Band Structures of Ultrathin Bi(110) Films on Black Phosphorus Substrates Using Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 087105
[3] PANG Fei. Magneto-Transport Properties of Insulating Bulk States in Bi(111) Films[J]. Chin. Phys. Lett., 2015, 32(02): 087105
[4] SUN Jin-Fang, CHENG Fang. Tuning Out-of-Plane Spin Polarization Using in-Plane Magnetic Fields in a Quasi-One-Dimensional Quantum Wire Embedded in (110) Plane[J]. Chin. Phys. Lett., 2014, 31(03): 087105
[5] ZHANG Qi, GONG Jiang-Bin, OH Choo-Hiap. Synthetic Spin-Orbit Coupling in Two-Level Cold Atoms[J]. Chin. Phys. Lett., 2013, 30(8): 087105
[6] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 087105
[7] XU Zhong-Hui, XIAO Wen, CHEN Yu-Guang. A Spin-Polarized Current Direction Controller Based on a Nonuniform Rashba Quantum Wire[J]. Chin. Phys. Lett., 2013, 30(5): 087105
[8] A. John Peter, Chang Woo Lee. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure[J]. Chin. Phys. Lett., 2012, 29(11): 087105
[9] XIAO Xian-Bo, LI Fei, and LIU Nian-Hua. Spin Filtering in a Rashba Electron Waveguide Induced by Edge Disorder[J]. Chin. Phys. Lett., 2012, 29(8): 087105
[10] Samad Javidan* . Spin Filtering in a Nanowire Superlattice by Dresselhause Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(8): 087105
[11] OUYANG Sheng-De, QUAN Ya-Min, LIU Da-Yong, ZOU Liang-Jian** . A Comparative Investigation on the JT Effect in Triangular Compounds of NaMnO2, NaNiO2 and NaTiO2[J]. Chin. Phys. Lett., 2011, 28(6): 087105
[12] LIU Yu**, CHENG Fang . Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2011, 28(6): 087105
[13] PANG Fei, YIN Shu-Li, LIANG Xue-Jin, CHEN Dong-Min . Anomalous Magneto-Transport Properties of Epitaxial Single-Crystal Bi Films on Si(111)[J]. Chin. Phys. Lett., 2010, 27(10): 087105
[14] LIN Liang-Zhong, ZHU Rui, DENG Wen-Ji. Shot Noise in Aharonov-Casher Rings[J]. Chin. Phys. Lett., 2010, 27(6): 087105
[15] NI Jia-Ting, LIANG Xiao-Wan, CHEN Bin, T. Koga,. Spin Interference in Rectangle Loop Based on Rashba and Dresselhaus Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2009, 26(12): 087105
Full text