Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 080701    DOI: 10.1088/0256-307X/37/8/080701
Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press
Yu-Chen Shang1†, Fang-Ren Shen1†, Xu-Yuan Hou1, Lu-Yao Chen1, Kuo Hu1, Xin Li2, Ran Liu1,2, Qiang Tao1, Pin-Wen Zhu1,2, Zhao-Dong Liu1,2*, Ming-Guang Yao1*, Qiang Zhou1,2, Tian Cui1,2, and Bing-Bing Liu1,2*
1State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
2Synergetic Extreme Condition User Facility, Jilin University, Changchun 130012, China
Cite this article:   
Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou et al  2020 Chin. Phys. Lett. 37 080701
Download: PDF(3565KB)   PDF(mobile)(3556KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Pressure generation to a higher pressure range in a large-volume press (LVP) denotes our ability to explore more functional materials and deeper Earth's interior. Pressure generated by normal tungsten carbide (WC) anvils in a commercial way is mostly limited to 25 GPa in LVPs due to the limitation of their hardness and design of cell assemblies. We adopt three newly developed WC anvils for ultrahigh pressure generation in a Walker-type LVP with a maximum press load of 1000 ton. The hardest ZK01F WC anvils exhibit the highest efficiency of pressure generation than ZK10F and ZK20F WC anvils, which is related to their performances of plastic deformations. Pressure up to 35 GPa at room temperature is achieved at a relatively low press load of 4.5 MN by adopting the hardest ZK01F WC anvils with three tapering surfaces in conjunction with an optimized cell assembly, while pressure above 35 GPa at 1700 K is achieved at a higher press load of 7.5 MN. Temperature above 2000 K can be generated by our cell assemblies at pressure below 30 GPa. We adopt such high-pressure and high-temperature techniques to fabricate several high-quality and well-sintered polycrystalline minerals for practical use. The present development of high-pressure techniques expands the pressure and temperature ranges in Walker-type LVPs and has wide applications in physics, materials, chemistry, and Earth science.
Received: 29 April 2020      Published: 28 July 2020
PACS:  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  62.50.-p (High-pressure effects in solids and liquids)  
  81.40.Vw (Pressure treatment)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51320105007, 11634004 and 41902034), the Fundamental Research Funds for the Central Universities of China (Grant No. 45119031C037), and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1132).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yu-Chen Shang
Fang-Ren Shen
Xu-Yuan Hou
Lu-Yao Chen
Kuo Hu
Xin Li
Ran Liu
Qiang Tao
Pin-Wen Zhu
Zhao-Dong Liu
Ming-Guang Yao
Qiang Zhou
Tian Cui
and Bing-Bing Liu
[1] Kawai N and Rev S 1970 Rev. Sci. Instrum. 41 1178
[2] Yuan Z et al. 2017 Chin. Phys. Lett. 34 040701
[3] Irifune T et al. 2003 Nature 421 599
[4] Fang S et al. 2019 Chin. Phys. B 28 098101
[5] Cui Q et al. 2016 Phys. Rev. Lett. 117 176603
[6] Huang Q et al. 2014 Nature 510 250
[7]Walker D, Carpenter M A and Hitch C M 1990 Am. Mineral. 75 1020
[8]Keppler H and Frost D 2005 Mineral Behaviour at Extreme Conditions (Budapest: Eötvös University Press) p 1
[9]Irifune T et al. 1992 High Pressure Research: Application to Earth and Planetary Sciences (Tokyo/AGU, Washington, DC: Terrapub) p 43
[10] Irifune T, Isobe F and Shinmei T 2014 Phys. Earth Planet. Inter. 228 255
[11] Ito E and Rev A 2002 Rev. High Press. Sci. Technol. 12 104
[12] Tange Y, Irifune T and Fnakoshi K 2008 High Press. Res. 28 245
[13] Tange Y et al. 2012 J. Geophys. Res. 117 B06201
[14] Yamazaki D et al. 2014 Phys. Earth Planet. Inter. 228 262
[15] Liu Z D et al. 2016 Phys. Earth Planet. Inter. 257 18
[16] Liu Z D et al. 2017 J. Geophys. Res.: Solid Earth 122 7775
[17] Ishii T et al. 2016 Rev. Sci. Instrum. 87 024501
[18] Ishii T et al. 2017 High Press. Res. 37 507
[19] Kunimoto T et al. 2016 High Press. Res. 36 1
[20] Ito E 1977 Geophys. Res. Lett. 4 72
[21] Liu Z D, Ishii T and Katsura T 2017 Geochem. Perspect. Lett. 5 12
[22]Kumazawa M 1973 High Temp.-High Press. 5 599
[23] Zhai S, Ito E and Yoneda A 2008 High Press. Res. 28 265
[24]Yoneda A et al. 1984 High Temp.-High Press. 16 637
[25] Hiroshi K and Yingwei F 2002 Geochim. Cosmochim. Acta 66 2099
Related articles from Frontiers Journals
[1] Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi. Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator[J]. Chin. Phys. Lett., 2020, 37(6): 080701
[2] Yan-Xing Shang, Fang Hong, Jian-Hong Dai, Hui-Yu, Ya-Nan Lu, En-Ke Liu, Xiao-Hui Yu, Gang-Qin Liu, Xin-Yu Pan. Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins[J]. Chin. Phys. Lett., 2019, 36(8): 080701
[3] Xiao-Lin Ni, Lei-Ming Fang, Xin Li, Xi-Ping Chen, Lei Xie, Duan-Wei He, Zi-Li Kou. Neutron Diffraction of Large-Volume Samples at High Pressure Using Compact Opposed-Anvil Cells[J]. Chin. Phys. Lett., 2018, 35(4): 080701
[4] Lun Xiong, Li-Gang Bai, Xiao-Dong Li, Jing Liu. Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80GPa[J]. Chin. Phys. Lett., 2017, 34(10): 080701
[5] Zhen Yuan, Jin-Long Zhu, Shao-Min Feng, Chang-Chun Wang, Li-Juan Wang, Qing-Qing Liu, Chang-Qing Jin. Wide-Temperature-Range Dielectric Permittivity Measurement under High Pressure[J]. Chin. Phys. Lett., 2017, 34(4): 080701
[6] Xiao-Yan Cui, Ting-Jing Hu, Jing-Shu Wang, Jun-Kai Zhang, Xue-Fei Li, Jing-Hai Yang, Chun-Xiao Gao. Pressure Effects on the Charge Carrier Transportation of BaF$_{2}$ Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(4): 080701
[7] YANG Shuang, DING Kun, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Bandgap Engineering in Wurtzite GaAs Nanowires by Hydrostatic Pressure[J]. Chin. Phys. Lett., 2015, 32(07): 080701
[8] HU Ting-Jing, CUI Xiao-Yan, LI Xue-Fei, WANG Jing-Shu, YANG Jing-Hai, GAO Chun-Xiao. In Situ Electrical Resistivity and Hall Effect Measurement of β-HgS under High Pressure[J]. Chin. Phys. Lett., 2015, 32(01): 080701
[9] YANG Jie, PENG Gang, LIU Cai-Long, LU Han, HAN Yong-Hao, GAO Chun-Xiao . The Effect of By-pass Current on the Accuracy of Resistivity Measurement in a Diamond Anvil Cell[J]. Chin. Phys. Lett., 2013, 30(6): 080701
[10] ZHAO Bei-Jing, LIU Fu-Sheng, ZHANG Ning-Chao, FENG Li-Peng,WANG Wen-Peng, ZHANG Ming-Jian. A High-Spectral-Resolution Laser Raman System and Its Application in Shock–Compressed Benzene[J]. Chin. Phys. Lett., 2013, 30(3): 080701
[11] HAN Qi-Gang, ZHANG Qiang, LI Ming-Zhe, JIA Xiao-Peng, LI Yue-Fen, MA Hong-An. An Effective Solution for the Best Set of Beveling Parameters of the Cubic High-Pressure Tungsten Carbide Anvil[J]. Chin. Phys. Lett., 2012, 29(11): 080701
[12] LI Xiao-Lei**,WANG Li-Ying. The Microstructure and Thermal Conductivity of Aluminum Nitride Ceramics Sintered at High Pressure with CaC2[J]. Chin. Phys. Lett., 2012, 29(5): 080701
[13] FAN Da-Wei**, MA Mai-Ning, YANG Jun-Jie, WEI Shu-Yi, CHEN Zhi-Qiang, XIE Hong-Sen . In situ High-Pressure Synchrotron X-Ray Diffraction Study of Clinozoisite[J]. Chin. Phys. Lett., 2011, 28(12): 080701
[14] FAN Ya, ZHOU Jing, LI Shuang, GUAN Fu-Ying, XU Da-Peng** . Pressure-induced Phase Transition in Oleic Acid Studied by Raman Spectroscopy[J]. Chin. Phys. Lett., 2011, 28(11): 080701
[15] FAN Da-Wei**, WEI Shu-Yi, LIU Jing, LI Yan-Chun, XIE Hong-Sen . High Pressure X-Ray Diffraction Study of a Grossular–Andradite Solid Solution and the Bulk Modulus Variation along this Solid Solution[J]. Chin. Phys. Lett., 2011, 28(7): 080701
Full text