Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 076301    DOI: 10.1088/0256-307X/37/7/076301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Theoretical Simulation of the Temporal Behavior of Bragg Diffraction Derived from Lattice Deformation
Cong Guo1,2, Shuai-Shuai Sun2, Lin-Lin Wei2, Huan-Fang Tian2, Huai-Xin Yang2,3, Shu Gao1, Yuan Tan1, and Jian-Qi Li2,3,4*
1School of Physics and Information Engineering & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Cite this article:   
Cong Guo, Shuai-Shuai Sun, Lin-Lin Wei et al  2020 Chin. Phys. Lett. 37 076301
Download: PDF(918KB)   PDF(mobile)(914KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A theoretical study on the structural dynamics of the temporal behavior of Bragg diffraction is presented and compared with experimental results obtained via ultrafast electron crystallography. In order to describe the time-dependent lattices and calculate the Bragg diffraction intensity, we introduce the basic vector offset matrix, which can be used to quantify the shortening, lengthening and rotation of the three lattice vectors (i.e., lattice deformation). Extensive simulations are performed to evaluate the four-dimensional electron crystallography model. The results elucidate the connection between structural deformations and changes in diffraction peaks, and sheds light on the quantitative analysis and comprehensive understanding of the structural dynamics.
Received: 15 April 2020      Published: 21 June 2020
PACS:  63.10.+a (General theory)  
  61.05.jd (Theories of electron diffraction and scattering)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos. 2016YFA0300303, 2017YFA0504703, and 2017YFA0302904, the National Basic Research Program of China under Grant No. 2015CB921304, the National Natural Science Foundation of China under Grant Nos. 11604372, 11474323, 11774391, 11774403, and 61575085, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No. XDB25000000, and the Scientific Instrument Developing Project of the Chinese Academy of Sciences under Grant No. ZDKYYQ20170002.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/076301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/076301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cong Guo
Shuai-Shuai Sun
Lin-Lin Wei
Huan-Fang Tian
Huai-Xin Yang
Shu Gao
Yuan Tan
and Jian-Qi Li
[1] Zewail A H 2006 Annu. Rev. Phys. Chem. 57 65
[2] Tang J, Yang D S and Zewail A H 2007 J. Phys. Chem. C 111 8957
[3] Yang D S, Gedik N and Zewail A H 2007 J. Phys. Chem. C 111 4889
[4] Cao G, Sun S, Li Z, Tian H, Yang H and Li J 2015 Sci. Rep. 5 8404
[5] Greig S R and Elezzabi A Y 2016 Sci. Rep. 6 19056
[6] Mohd Bahar A A, Zakaria Z, Md. Arshad M K, Isa A A M, Dasril Y and Alahnomi R A 2019 Sci. Rep. 9 5467
[7] Park H S, Baskin J S, Barwick B, Kwon O H and Zewail A H 2009 Ultramicroscopy 110 7
[8] Fritz D M et al. 2007 Science 315 633
[9] Harb M, Peng W, Sciaini G, Hebeisen C T, Ernstorfer R, Eriksson M A, Lagally M G, Kruglik S G and Miller R D 2009 Phys. Rev. B 79 094301
[10] Jiang L and Tsai H L 2005 J. Heat. Trans. 127 1167
[11] Bechtel J H 1975 J. Appl. Phys. 46 1585
[12] Wellershoff S S, Hohlfeld J, Güdde J and Matthias E 1999 Appl. Phys. A 69 S99
[13] Wright O B and Kawashima K 1992 Phys. Rev. Lett. 69 1668
[14] Rossignol C, Rampnoux J M, Perton M, Audoin B and Dilhaire S 2005 Phys. Rev. Lett. 94 166106
[15] Wright O B 1994 Phys. Rev. B 49 9985
[16] Hase M, Ishioka K, Demsar J, Ushida K and Kitajima M 2005 Phys. Rev. B 71 184301
[17] Hartland G V 2004 Phys. Chem. Chem. Phys. 6 5263
[18] Thomsen C, Grahn H T, Maris H J and Tauc J 1986 Phys. Rev. B 34 4129
[19] Hodak J H, Henglein A and Hartland G V 2000 J. Phys. Chem. B 104 5053
[20] Eesley G L, Clemens B M and Paddock C A 1987 Appl. Phys. Lett. 50 717
[21] Brorson S D, Fujimoto J G and Ippen E P 1987 Phys. Rev. Lett. 59 1962
[22] Sun C, Vallée F, Acioli L, Ippen E P and Fujimoto J G 1993 Phys. Rev. B 48 12365
[23] Lindenberg A M et al. 2000 Phys. Rev. Lett. 84 111
[24] Cavalleri A et al. 2000 Phys. Rev. Lett. 85 586
[25] Rose-Petruck C et al. 1999 Nature 398 310
[26] Decamp M F, Reis D A, Fritz D M, Bucksbaum P H, Dufresne E M and Clarke R 2005 J. Synchrotron Rad. 12 177
[27] Plech A et al. 2003 Europhys. Lett. 61 762
[28] Fan H and Pan X 1998 Chin. Phys. Lett. 15 547
[29] Guo X, Jiang Z Y, Chen L, Chen L, Xin J, Rentzepis P M and Chen J 2015 Chin. Phys. B 24 108701
[30] Nie S, Wang X, Park H, Clinite R and Cao J 2006 Phys. Rev. Lett. 96 025901
[31] Park H, Wang X, Nie S, Clinite R and Cao J 2005 Phys. Rev. B 72 100301
[32]Cowley J M 1995 Diffraction Physics (Amsterdam: Elsevier)
[33]Williams D B and Carter C B 1996 Transmission Electron Microscopy: A Textbook for Materials Science (New York: Plenum Press)
[34] Wei L et al. 2017 J. Biomol. Struct. Dyn. 4 044012
Related articles from Frontiers Journals
[1] LIU Ke-Jia, LU Huai-Xin, ZHANG Yong-De. Exact Solution for a Chain of Coupled Oscillators with Two Types of Atom[J]. Chin. Phys. Lett., 2000, 17(4): 076301
[2] FAN Hong-yi, PAN Xiao-yin. Phase Operator and Lattice Green’s Function for Ring-Lattice Model in p-th Nearest Neighbour Interact ion Approximation [J]. Chin. Phys. Lett., 1998, 15(8): 076301
[3] ZHANG Zhiyong, XIONG Shijie. Reflectionless Acoustic Waves in One-Dimensional Elastic Structure with Correlated Disorder[J]. Chin. Phys. Lett., 1995, 12(10): 076301
Viewed
Full text


Abstract