Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 107506    DOI: 10.1088/0256-307X/37/10/107506
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation
Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou*, and Jijun Zhao 
MOE Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China
Cite this article:   
Yu Guo , Nanshu Liu , Yanyan Zhao  et al  2020 Chin. Phys. Lett. 37 107506
Download: PDF(2562KB)   PDF(mobile)(3449KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) ferromagnets with high Curie temperature have long been the pursuit for electronic and spintronic applications. CrI$_{3}$ is a rising star of intrinsic 2D ferromagnets, however, it suffers from weak exchange coupling. Here we propose a general strategy of self-intercalation to achieve enhanced ferromagnetism in bilayer CrI$_{3}$. We show that filling either Cr or I atoms into the van der Waals gap of stacked and twisted CrI$_{3}$ bilayers can induce the double exchange effect and significantly strengthen the interlayer ferromagnetic coupling. According to our first-principles calculations, the intercalated native atoms act as covalent bridge between two CrI$_{3}$ layers and lead to discrepant oxidation states for the Cr atoms. These theoretical results offer a facile route to achieve high-Curie-temperature 2D magnets for device implementation.
Received: 17 July 2020      Published: 12 September 2020
PACS:  75.50.Dd (Nonmetallic ferromagnetic materials)  
  75.30.Et (Exchange and superexchange interactions)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974068 and 11874097), the China Postdoctoral Science Foundation (Grant Nos. BX20190052 and 2020M670739), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. DUT20LAB110 and DUT19LK12). The authors acknowledge the computer resources provided by the Supercomputing Center of Dalian University of Technology and Shanghai Supercomputer Center.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/107506       OR      http://cpl.iphy.ac.cn/Y2020/V37/I10/107506
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Guo 
Nanshu Liu 
Yanyan Zhao 
Xue Jiang 
Si Zhou
and Jijun Zhao 
[1] Geim A K and Grigorieva I V 2013 Nature 499 419
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Fivaz R and Mooser E 1967 Phys. Rev. 163 743
[4] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270
[5] Niu B, Su T, Francisco B A, Ghosh S, Kargar F, Huang X, Lohmann M, Li J, Xu Y and Taniguchi T 2019 Nano Lett. 20 553
[6] Wang H, Fan F, Zhu S and Wu H 2016 Europhys. Lett. 114 47001
[7] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H and Xiao D 2018 Nat. Nanotechnol. 13 544
[8] Bao W, Wan J, Han X, Cai X, Zhu H, Kim D, Ma D, Xu Y, Munday J N and Drew H D 2014 Nat. Commun. 5 4224
[9] Ichinokura S, Sugawara K, Takayama A, Takahashi T and Hasegawa S 2016 ACS Nano 10 2761
[10] Gong Y, Yuan H, Wu C L, Tang P, Yang S Z, Yang A, Li G, Liu B, van de Groep J, Brongersma M L, Chisholm M F, Zhang S C, Zhou W and Cui Y 2018 Nat. Nanotechnol. 13 294
[11] Wang N, Tang H, Shi M, Zhang H, Zhuo W, Liu D, Meng F, Ma L, Ying J and Zou L 2019 J. Am. Chem. Soc. 141 17166
[12] Weber D, Trout A H, McComb D W and Goldberger J E 2019 Nano Lett. 19 5031
[13] Zhang C, Yuan Y, Wang M, Li P, Zhang J, Wen Y, Zhou S and Zhang X X 2019 Phys. Rev. Mater. 3 114403
[14] Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D and Morosan E 2015 Phys. Rev. B 91 054426
[15] Morosan E, Zandbergen H, Li L, Lee M, Checkelsky J, Heinrich M, Siegrist T, Ong N P and Cava R J 2007 Phys. Rev. B 75 104401
[16] Liu C, Zhang Y, Dong F, Reshak A, Ye L, Pinna N, Zeng C, Zhang T and Huang H 2017 Appl. Catal. B: Environ. 203 465
[17] Zhao X, Song P, Wang C, Riis-Jensen A C, Fu W, Deng Y, Wan D, Kang L, Ning S and Dan J 2020 Nature 581 171
[18] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018 Nano Lett. 18 7658
[22] Liu N, Zhou S and Zhao J 2020 arXiv:2008.12519v1 [cond-mat.mtrl-sci]
[23] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P and Fernández-Rossier J 2018 Science 360 1218
[24] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T and Watanabe K 2018 Science 360 1214
[25] Morell E S, León A, Miwa R H and Vargas P 2019 2D Mater. 6 025020
[26] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[27] Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T and Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801
[28] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T and Kaxiras E 2018 Nature 556 80
[29] Yan W, He W Y, Chu Z D, Liu M, Meng L, Dou R F, Zhang Y, Liu Z, Nie J C and He L 2013 Nat. Commun. 4 2159
[30] Yin L J, Qiao J B, Zuo W J, Li W T and He L 2015 Phys. Rev. B 92 081406
[31] Fang T, Liu T, Jiang Z, Yang R, Servati P and Xia G 2019 ACS Appl. Nano Mater. 2 3138
[32] Lim H E, Miyata Y, Kitaura R, Nishimura Y, Nishimoto Y, Irle S, Warner J H, Kataura H and Shinohara H 2013 Nat. Commun. 4 2548
[33] Liu N, Zhang J, Zhou S and Zhao J 2020 J. Mater. Chem. C 8 6264
[34] Ganguli S C, Singh H, Roy I, Bagwe V, Bala D, Thamizhavel A and Raychaudhuri P 2016 Phys. Rev. B 93 144503
[35] Bointon T H, Khrapach I, Yakimova R, Shytov A V, Craciun M F and Russo S 2014 Nano Lett. 14 1751
[36] Seel J, Dahn J 2000 J. Electrochem. Soc. 147 892
[37] Voiry D, Yamaguchi H, Li J, Silva R, Alves D C, Fujita T, Chen M, Asefa T, Shenoy V B and Eda G 2013 Nat. Mater. 12 850
[38] Koski K J, Wessells C D, Reed B W, Cha J J, Kong D and Cui Y 2012 J. Am. Chem. Soc. 134 13773
[39] Yuan H, Wang H and Cui Y 2015 Acc. Chem. Res. 48 81
[40] Motter J P, Koski K J and Cui Y 2014 Chem. Mater. 26 2313
[41] Kovtyukhova N I, Wang Y, Lv R, Terrones M, Crespi V H and Mallouk T E 2013 J. Am. Chem. Soc. 135 8372
[42] Lai H, He R, Xu X, Shi T, Wan X, Meng H, Chen K, Zhou Y, Chen Q and Liu P 2020 Nanoscale 12 1448
[43] Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K and Kan E 2018 J. Am. Chem. Soc. 140 11519
[44] Goodenough J B 1955 Phys. Rev. 100 564
[45] Zener C 1951 Phys. Rev. 81 440
Related articles from Frontiers Journals
[1] Kang-Kang Li, Jiang-Ping Hu. Weyl and Nodal Ring Magnons in Three-Dimensional Honeycomb Lattices[J]. Chin. Phys. Lett., 2017, 34(7): 107506
[2] WANG Ye-Shuai, XIA Nian-Ming, ZUO Hua-Kun, SHEN Yi-Ning, XIA Zheng-Cai. Switching Behavior Induced by Electric and Magnetic Fields in (La0.73Bi0.27)0.67Ca0.33MnO3[J]. Chin. Phys. Lett., 2014, 31(04): 107506
[3] SI Ping-Zhan, JIANG Wei, WANG Hai-Xia, ZHONG Min, GE Hong-Liang, CHOI Chul-Jin, LEE Jung-Goo. The High Nitrogen Pressure Synthesis of Manganese Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 107506
[4] TANG Xiao-Li, SU Hua, and ZHANG Huai-Wu. Tailoring the Microstructure of NiZn Ferrite for Power Field Applications[J]. Chin. Phys. Lett., 2012, 29(8): 107506
[5] QI Xin, ZHOU Xin, SHU Di, ZHAO Jing-Jing, WANG Wei, CHEN Juan** . Effect of Porous Structure on the Magnetic Properties of NixMgyZn1−x-yFe2O4 Magnetic Materials[J]. Chin. Phys. Lett., 2011, 28(10): 107506
[6] ZHOU Xin, HOU Zhi-Ling, LI Feng, QI Xin** . Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method[J]. Chin. Phys. Lett., 2010, 27(11): 107506
[7] SU Hua, ZHANG Huai-Wu, TANG Xiao-Li, JING Yu-Lan, ZHONG Zhi-Yong. Influences of Bi2O3/V2O5 Additives on the Microstructure and Magnetic Properties of Lithium Ferrite[J]. Chin. Phys. Lett., 2009, 26(5): 107506
[8] WANG Xiao-Xiong, LI Hong-Nian, XU Ya-Bo, WANG, ZHANG Wen-Hua, XU Fa-Qiang. Electronic Structure of Eu6C60[J]. Chin. Phys. Lett., 2009, 26(1): 107506
[9] SONG Yuan-Qiang, ZHANG Huai-Wu, WEN Qi-Ye, ZHU Hao, John Q. Xiao. Additional Y3+ Doping Effect on Ferromagnetism of Ce0.97Co0.03O2-δ Compounds[J]. Chin. Phys. Lett., 2008, 25(3): 107506
[10] TENG Xiao-Yun, YU Wei, YANG Li-Hua, HAO Qiu-Yan, ZHANG Li, XU He-Ju, LIU Cai-Chi, FU Guang-Sheng. Room-Temperature Ferromagnetism in Zn 1-x MnxO Thin Films Deposited by Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2007, 24(4): 107506
[11] ZHANG Ning, BAO Jian-Chun, LI Gang, GENG Tao, CHEN Ji-Kang. Intergranular Tunnelling and Field-Induced Percolation Fluctuation of Granular Composites (La1-zAgzMnO3)/(MnO2/Mn2O3)[J]. Chin. Phys. Lett., 2005, 22(11): 107506
[12] DAI Yao-Dong, HAN Wei, ZHENG Likun, XIA Yuan-Fu. Magnetic Behaviour of Iron Oxychloride and Its Organometallic Intercalation Compounds Studied by Möossbauer Spectroscopy[J]. Chin. Phys. Lett., 2005, 22(8): 107506
[13] WU Jian, ZHANG Shi-Yuan, HU Xiu-Kun. Spin-Polarized Tunnelling Magnetoresistance Effects in La0.833K0.167MnO3/SrTiO3 Polycrystalline Perovskite Manganites[J]. Chin. Phys. Lett., 2005, 22(6): 107506
[14] WANG Hong-Bo, XUE De-Sheng. Electronic Structures and Magnetic Properties of CoN, NiN and CuN[J]. Chin. Phys. Lett., 2004, 21(8): 107506
[15] WU Jian, ZHANG Shi-Yuan. Effects of Ag Doping on Magnetoresistance of La0.833K0.167MnO3 Polycrystalline Perovskite Manganites[J]. Chin. Phys. Lett., 2004, 21(2): 107506
Viewed
Full text


Abstract