Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 107401    DOI: 10.1088/0256-307X/37/10/107401
Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures
Fang Hong1†, Liuxiang Yang2†, Pengfei Shan1,3, Pengtao Yang1, Ziyi Liu1, Jianping Sun1, Yunyu Yin1, Xiaohui Yu1,3*, Jinguang Cheng1,3*, and Zhongxian Zhao1,3
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Fang Hong, Liuxiang Yang, Pengfei Shan et al  2020 Chin. Phys. Lett. 37 107401
Download: PDF(688KB)   PDF(mobile)(677KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, the theoretically predicted lanthanum superhydride, LaH$_{10 \pm \delta}$, with a clathrate-like structure was successfully synthesized and found to exhibit a record high superconducting transition temperature $T_{\rm c} \approx 250$ K at $\sim $170 GPa, opening a new route for room-temperature superconductivity. However, since in situ experiments at megabar pressures are very challenging, few groups have reported the $\sim $250 K superconducting transition in LaH$_{10 \pm \delta}$. Here, we establish a simpler sample-loading procedure that allows a relatively large sample size for synthesis and a standard four-probe configuration for resistance measurements. Following this procedure, we successfully synthesized LaH$_{10 \pm \delta}$ with dimensions up to $10 \times 20$ μm$^{2}$ by laser heating a thin La flake and ammonia borane at $\sim $1700 K in a symmetric diamond anvil cell under the pressure of 165 GPa. The superconducting transition at $T_{\rm c} \approx 250$ K was confirmed through resistance measurements under various magnetic fields. Our method will facilitate explorations of near-room-temperature superconductors among metal superhydrides.
Received: 16 September 2020      Published: 29 September 2020
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  81.40.Vw (Pressure treatment)  
  62.50.-p (High-pressure effects in solids and liquids)  
  88.30.rd (Inorganic metal hydrides)  
Fund: Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB33000000 and XDB25000000), the Beijing Natural Science Foundation (Grant No. Z190008), the National Natural Science Foundation of China (Grant Nos. 11575288, 11921004, 11888101, 11904391, 11834016 and 11874400), the National Key R&D Program of China (Grant Nos. 2016YFA0401503 and 2018YFA0305700), and the Youth Innovation Promotion Association, the Key Research Program of Frontier Sciences and the Interdisciplinary Innovation Team of Chinese Academy of Sciences (Grant Nos. 2016006, JCTD-2019-01, and QYZDBSSW-SLH013).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Fang Hong
Liuxiang Yang
Pengfei Shan
Pengtao Yang
Ziyi Liu
Jianping Sun
Yunyu Yin
Xiaohui Yu
Jinguang Cheng
and Zhongxian Zhao
[1] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001
[2] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[3] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R and Eremets M 2020 Phys. Rep. 856 1
[4]Uchida S I 2015 High Temperature Superconductivity: The Road to Higher Critical Temperature in Springer Series in Materials Science vol 213 (Berlin: Springer)
[5] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[6] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[7] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[8] Schilling A, Cantoni M, Guo J and Ott H 1993 Nature 363 56
[9] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H and Mao H K 1994 Phys. Rev. B 50 4260
[10] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[11] Ashcroft N 2004 Phys. Rev. Lett. 92 187002
[12] Babaev E and Ashcroft N 2004 Nature 431 666
[13] Liu X D, Dalladay-Simpson P, Howie R T, Li B and Gregoryanz E 2017 Science 357 eaan2286
[14] Li B, Ji C, Yang W, Wang J, Yang K, Xu R, Liu W, Cai Z, Chen J and Mao H K 2018 Proc. Natl. Acad. Sci. USA 115 1713
[15] Drozdov A, Eremets M, Troyan I, Ksenofontov V and Shylin S I 2015 Nature 525 73
[16] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2015 Sci. Rep. 4 6968
[17] Liu H, Naumov I I, Hoffmann R, Ashcroft N and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[18] Semenok D V, Kruglov I A, Savkin I A, Kvashnin A G and Oganov A R 2020 Curr. Opin. Solid State Mater. Sci. 24 100808
[19] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[20] Drozdov A, Kong P, Minkov V, Besedin S, Kuzovnikov M, Mozaffari S, Balicas L, Balakirev F, Graf D and Prakapenka V 2019 Nature 569 528
[21] Liu H, Naumov I I, Geballe Z M, Somayazulu M, John S T and Hemley R J 2018 Phys. Rev. B 98 100102
[22] Kong P, Minkov V, Kuzovnikov M, Besedin S, Drozdov A, Mozaffari S, Balicas L, Balakirev F, Prakapenka V and Greenberg E 2019 arXiv:1909.10482 [cond-mat.supr-con]
[23] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Mater. Today 33 36
[24] Akahama Y and Kawamura H 2007 High Press. Res. 27 473
[25] Akahama Y and Kawamura H 2006 J. Appl. Phys. 100 043516
[26] Werthamer N, Helfand E and Hohenberg P 1966 Phys. Rev. 147 295
Related articles from Frontiers Journals
[1] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 107401
[2] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 107401
[3] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 107401
[4] Yi Cui, Ze Hu, Jin-Shan Zhang, Wen-Long Ma, Ming-Wei Ma, Zhen Ma, Cong Wang, Jia-Qiang Yan, Jian-Ping Sun, Jin-Guang Cheng, Shuang Jia, Yuan Li, Jin-Sheng Wen, He-Chang Lei, Pu Yu, Wei Ji, Wei-Qiang Yu. Ionic-Liquid-Gating Induced Protonation and Superconductivity in FeSe, FeSe$_{0.93}$S$_{0.07}$, ZrNCl, 1$T$-TaS$_2$ and Bi$_2$Se$_3$[J]. Chin. Phys. Lett., 2019, 36(7): 107401
[5] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 107401
[6] Juanjuan Liu, A. T. Savici, G. E. Granroth, K. Habicht, Y. Qiu, Jin Hu, Z. Q. Mao, Wei Bao. A Triplet Resonance in Superconducting Fe$_{1.03}$Se$_{0.4}$Te$_{0.6}$[J]. Chin. Phys. Lett., 2018, 35(12): 107401
[7] Xiao-Chuan Wang, Jia Yu, Bin-Bin Ruan, Bo-Jin Pan, Qing-Ge Mu, Tong Liu, Kang Zhao, Gen-Fu Chen, Zhi-An Ren. Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6K by Th and F Codoping[J]. Chin. Phys. Lett., 2017, 34(7): 107401
[8] Jun Ma, Bin-Bin Fu, Jun-Zhang Ma, Ling-Yuan Kong, Di Chen, Ji-Feng Shao, Chang-Jin Zhang, Tian Qian, Yu-Heng Zhang, Hong Ding. Experimental Investigation of Electronic Structure of La(O,F)BiSe$_{2}$[J]. Chin. Phys. Lett., 2016, 33(12): 107401
[9] De-Fa Liu, Lin Zhao, Shao-Long He, Yong Hu, Bing Shen, Jian-Wei Huang, Ai-Ji Liang, Yu Xu, Xu Liu, Jun-Feng He, Dai-Xiang Mou, Shan-Yu Liu, Hai-Yun Liu, Guo-Dong Liu, Wen-Hao Zhang, Fang-Sen Li, Xu-Cun Ma, Qi-Kun Xue, Xian-Hui Chen, Gen-Fu Chen, Li Yu, Jun Zhang, Zu-Yan Xu, Chuang-Tian Chen, Xing-Jiang Zhou. Common Electronic Features and Electronic Nematicity in Parent Compounds of Iron-Based Superconductors and FeSe/SrTiO$_3$ Films Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(07): 107401
[10] LIU Yan, ZHAO Jian-Zhou, YU Li, LIN Cheng-Tian, LIANG Ai-Ji, HU Cheng, DING Ying, XU Yu, HE Shao-Long, ZHAO Lin, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, WENG Hong-Ming, DAI Xi, FANG Zhong, ZHOU Xing-Jiang. Identification of Topological Surface State in PdTe2 Superconductor by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2015, 32(06): 107401
[11] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 107401
[12] XU Min, WANG Li-Min, PENG Rui, GE Qing-Qin, CHEN Fei, YE Zi-Rong, ZHANG Yan, CHEN Su-Di, XIA Miao, LIU Rong-Hua, Arita M., Shimada K., Namatame H., Taniguchi M., Matsunami M., Kimura S., SHI Ming, CHEN Xian-Hui, YIN Wei-Guo, KU Wei, XIE Bin-Ping, FENG Dong-Lai. Electronic Structure Reconstruction across the Antiferromagnetic Transition in TaFe1.23Te3 Spin Ladder[J]. Chin. Phys. Lett., 2015, 32(02): 107401
[13] WANG Hai. Layered Compounds AFBiS2: Superior Birefringent Crystals[J]. Chin. Phys. Lett., 2015, 32(01): 107401
[14] YE Feng, BAO Wei, CHI Song-Xue, Antonio M. dos Santos, Jamie J. Molaison, FANG Ming-Hu, WANG Hang-Dong, MAO Qian-Hui, WANG Jin-Chen, LIU Juan-Juan, SHENG Jie-Ming. High-Pressure Single-Crystal Neutron Scattering Study of Magnetic and Fe Vacancy Orders in (Tl,Rb)2Fe4Se5 Superconductor[J]. Chin. Phys. Lett., 2014, 31(12): 107401
[15] LI Hai-Chao, XIANG Yuan-Yuan, WANG Qiang-Hua. Consistency between Itinerant and Local-Moment Pictures for Superconductivity in Alkaline Iron Selenide Superconductors[J]. Chin. Phys. Lett., 2014, 31(06): 107401
Full text