Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 107101    DOI: 10.1088/0256-307X/37/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$
Aolin Li1, Wenzhe Zhou1, Jiangling Pan2, Qinglin Xia2, Mengqiu Long2,3, and Fangping Ouyang1,2,3*
1State Key Laboratory of Powder Metallurgy, and Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
2School of Physics and Electronics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, China
3School of Physics and Technology, Xinjiang University, Urumqi 830046, China
Cite this article:   
Aolin Li, Wenzhe Zhou, Jiangling Pan et al  2020 Chin. Phys. Lett. 37 107101
Download: PDF(2951KB)   PDF(mobile)(3173KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Stacking-dependent magnetism in van der Waals materials has caught intense interests. Based on the first principle calculations, we investigate the coupling between stacking orders and interlayer magnetic orders in bilayer H-VSe$_{2}$. It is found that there are two stable stacking orders in bilayer H-VSe$_{2}$, named AB-stacking and A$^{\prime}$B-stacking. Under standard DFT framework, the A$^{\prime}$B-stacking prefers the interlayer AFM order and is semiconductive, whereas the AB-stacking prefers the FM order and is metallic. However, under the DFT+$U$ framework both the stacking orders prefer the interlayer AFM order and are semiconductive. By detailedly analyzing this difference, we find that the interlayer magnetism originates from the competition between antiferromagnetic interlayer super-superexchange and ferromagnetic interlayer double exchange, in which both the interlayer Se-4$p_{z}$ orbitals play a crucial role. In the DFT+$U$ calculations, the double exchange is suppressed due to the opened bandgap, such that the interlayer magnetic orders are decoupled with the stacking orders. Based on this competition mechanism, we propose that a moderate hole doping can significantly enhance the interlayer double exchange, and can be used to switch the interlayer magnetic orders in bilayer VSe$_{2}$. This method is also applicable to a wide range of semiconductive van der Waals magnets.
Received: 09 July 2020      Published: 29 September 2020
PACS:  71.70.Gm (Exchange interactions)  
  75.30.Et (Exchange and superexchange interactions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51272291), the Distinguished Young Scholar Foundation of Hunan Province (Grant No. 2015JJ1020), the Young Scholar Foundation of Hunan Province (Grant No. 2016JJ3142), the Central South University Research Fund for Sheng-Hua Scholars, Central South University State Key Laboratory of Powder Metallurgy, and the Fundamental Research Funds for the Central Universities of Central South University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/107101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/107101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Aolin Li
Wenzhe Zhou
Jiangling Pan
Qinglin Xia
Mengqiu Long
and Fangping Ouyang
[1] Woomer A H, Druffel D L, Sundberg J D, Pawlik J T and Warren S C 2019 J. Am. Chem. Soc. 141 10300
[2] Zhao Y D, Qiao J S, Yu P, Hu Z X, Lin Z Y, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399
[3] Jiang P H, Wang C, Chen D C, Zhong Z C, Yuan Z, Lu Z Y and Ji W 2019 Phys. Rev. B 99 144401
[4] Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018 Nano Lett. 18 7658
[5] Gmitra M, Kochan D, Hogl P and Fabian J 2016 Phys. Rev. B 93 155104
[6] Zhou W Z, Chen J Y, Yang Z X, Liu J W and Ouyang F P 2019 Phys. Rev. B 99 075160
[7] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
[8] Zhou X Y, Wang C, Zhou L W, Pan Y H, Lu Z Y, Wan X G, Wang X Q and Ji W 2020 Phys. Rev. B 102 020402
[9] Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F and Shan J 2019 Nat. Mater. 18 1303
[10] Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D and Xu X D 2019 Nat. Mater. 18 1298
[11] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[12] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H and Zhang Y B 2018 Nature 563 94
[13] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[14] O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
[15] Hirahara T, Eremeev S V, Shirasawa T, Okuyama Y, Kubo T, Nakanishi R, Akiyama R, Takayama A, Hajiri T, Ideta S, Matsunami M, Sumida K, Miyamoto K, Takagi Y, Tanaka K, Okuda T, Yokoyama T, Kimura S, Hasegawa S and Chulkov E V 2017 Nano Lett. 17 3493
[16] Tang Q K, Liu C Y, Zhang B B and Jie W Q 2018 J. Solid State Chem. 262 53
[17] Gonzalez-Arraga L A, Lado J L, Guinea F and San-Jose P 2017 Phys. Rev. Lett. 119 107201
[18] Wang X Q and Wu Z G 2017 Phys. Chem. Chem. Phys. 19 2148
[19] Spiecker E, Schmid A K, Minor A M, Dahmen U, Hollensteiner S and Jager W 2006 Phys. Rev. Lett. 96 086401
[20] Pan H 2014 J. Phys. Chem. C 118 13248
[21] Tong W Y and Duan C G 2017 npj Quantum Mater. 2 47
[22] Gong S J, Gong C, Sun Y Y, Tong W Y, Duan C G, Chu J H and Zhang X 2018 Proc. Natl. Acad. Sci. USA 115 8511
[23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Bucko T, Hafner J, Lebegue S and Angyan J G 2010 J. Phys. Chem. A 114 11814
[27] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[28] Esters M, Hennig R G and Johnson D C 2017 Phys. Rev. B 96 235147
[29] Kasai H, Tolborg K, Sist M, Zhang J W, Hathwar V R, Filso M O, Cenedese S, Sugimoto K, Overgaard J, Nishibori E and Iversen B B 2018 Nat. Mater. 17 249
[30] Zhao G M 2000 Phys. Rev. B 62 11639
[31] Schlottmann P 2003 Phys. Rev. B 67 174419
[32] Anderson P W 1950 Phys. Rev. 79 350
[33] Goodenough J B 1955 Phys. Rev. 100 564
[34] Zhang C X, Santosh K C, Nie Y F, Liang C P, Vandenberghe W G, Longo R C, Zheng Y P, Kong F T, Hong S, Wallace R M and Cho K 2016 ACS Nano 10 7370
Related articles from Frontiers Journals
[1] Di Wang, Jihai Yu, Feng Tang, Yuan Li, and Xiangang Wan. Determination of the Range of Magnetic Interactions from the Relations between Magnon Eigenvalues at High-Symmetry $k$ Points[J]. Chin. Phys. Lett., 2021, 38(11): 107101
[2] Chunkai Chan, Xiaodong Zhang, Yiou Zhang, Kinfai Tse, Bei Deng, Jingzhao Zhang, Junyi Zhu. Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer[J]. Chin. Phys. Lett., 2018, 35(1): 107101
[3] LI Ju-Fen, KUANG Xiao-Yu, ** . Analysis of Ground-State Zero-Field Splitting for Mn2+ in ZnNbOF56(H2O) and CoNbOF56(H2O)[J]. Chin. Phys. Lett., 2011, 28(6): 107101
[4] TIAN Gui-Hua, ZHONG Shu-Quan . A New Model For the Double Well Potential[J]. Chin. Phys. Lett., 2010, 27(10): 107101
[5] JIANG Ran, LI Zi-Feng. Oxygen Recovery in Hf Oxide Films Fabricated by Sputtering[J]. Chin. Phys. Lett., 2009, 26(5): 107101
[6] JIANG Ran, YAO Li-Ting. Interface Evolution of TiN/Poly Si as Gate Material on Si/HfO2 Stack[J]. Chin. Phys. Lett., 2008, 25(6): 107101
[7] LIU Bao-Rong, ZHAO Li-Juan, SUN Jian, YU Hua, SONG Jie, XU Jing-Jun,. Broadband and High Efficient 1530nm Emission from Oxyfluoride Glass Ceramics Codoped with Er 3+ and Yb 3+ Ions[J]. Chin. Phys. Lett., 2007, 24(2): 107101
[8] ZHANG Chang-Wen, ZHANG Zhong, WANG Shao-Qing, LI Hua, DONG Jian-Min, XING Nai-Sheng, GUO Yong-Quan, LI Wei. First-Principles Study of Electronic Structure of the Laves Phase ZrFe2[J]. Chin. Phys. Lett., 2007, 24(2): 107101
[9] ZHANG Chang-Wen, LI Hua, DONG Jian-Min, GUO Yong-Quan, LI Wei. Electronic Structure and Magnetic Properties of SmCo7-xZrx[J]. Chin. Phys. Lett., 2006, 23(6): 107101
[10] ZHANG Chang-Wen, LI Hua, DONG Jian-Min, WANG Yong-Juan, PAN Feng-Chun, GUO Yong-Quan, LI Wei. Exchange Coupling and Stability of SmCo7-xHfx[J]. Chin. Phys. Lett., 2005, 22(11): 107101
[11] ZHANG Chang-Wen, LI Hua, DONG Jian-Min, GUO Yong-Quan, LI Wei. Electronic Structure and Magnetism in Sm(Co,Cu)7[J]. Chin. Phys. Lett., 2005, 22(8): 107101
[12] ZHAO Kun, HUANG Yan-Hong, FENG Jia-Feng, WONG Hong-Kuen. Superconducting Transition Temperature and Metal--Semiconductor Transition Temperature in YBa2Cu4O8/La0.67Ca0.33MnO3/YBa2Cu4O8 Trilayer Films[J]. Chin. Phys. Lett., 2004, 21(12): 107101
Viewed
Full text


Abstract