Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 106102    DOI: 10.1088/0256-307X/37/10/106102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Structural Domain Imaging and Direct Determination of Crystallographic Orientation in Noncentrosymmetric Ca$_{3}$Ru$_{2}$O$_{7}$ Using Polarized Light Reflectance
Guoxiong Tang1, Libin Wen1, Hui Xing1*, Wenjie Liu1, Jin Peng2, Yu Wang2,3, Yupeng Li4, Baijiang Lv4, Yusen Yang1, Chao Yao1, Yueshen Wu1, Hong Sun1, Zhu-An Xu4, Zhiqiang Mao2,3, and Ying Liu3
1Key Laboratory of Artificial Structures and Quantum Control, and Shanghai Center for Complex Physics, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2Department of Physics and Engineering Physics, Tulane University, New Orleans 70118, USA
3Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
4Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
Cite this article:   
Guoxiong Tang, Libin Wen, Hui Xing et al  2020 Chin. Phys. Lett. 37 106102
Download: PDF(1430KB)   PDF(mobile)(1416KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The noncentrosymmetricity of a prototypical correlated electron system Ca$_{3}$Ru$_{2}$O$_{7}$ renders extensive interest in the possible polar metallic state, along with multiple other closely competing interactions. However, the structural domain formation in this material often complicates the study of intrinsic material properties. It is crucial to fully characterize the structural domains for unrevealing underlying physics. Here, we report the domain imaging on Ca$_{3}$Ru$_{2}$O$_{7}$ crystal using the reflection of polarized light at normal incidence. The reflection anisotropy measurement utilizes the relative orientation between electric field component of the incident polarized light and the principal axis of the crystal, and gives rise to a peculiar contrast. The domain walls are found to be the interfaces between 90$^{\circ}$ rotated twin crystals by complementary magnetization measurements. A distinct contrast in reflectance is also found in the opposite cleavage surfaces, owing to the polar mode of the RuO$_{6}$ octahedra. More importantly, the analysis of the contrast between all inequivalent cleavage surfaces enables a direct determination of the crystallographic orientation of each domain. Such an approach provides an efficient yet feasible method for structural domain characterization, which can also find applications in noncentrosymmetric crystals in general.
Received: 15 July 2020      Published: 29 September 2020
PACS:  61.50.-f (Structure of bulk crystals)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.20.Gj (Other metals and alloys)  
  78.40.Kc (Metals, semimetals, and alloys)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0308602 and 2016YFA0300500), the National Natural Science Foundation of China (Grant Nos. 11804220, 11774305 and 11974237) and Natural Science Foundation of Shanghai (Grant No. 20ZR1428900).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/106102       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/106102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guoxiong Tang
Libin Wen
Hui Xing
Wenjie Liu
Jin Peng
Yu Wang
Yupeng Li
Baijiang Lv
Yusen Yang
Chao Yao
Yueshen Wu
Hong Sun
Zhu-An Xu
Zhiqiang Mao
and Ying Liu
[1] Cheng J G, Zhou J S, Goodenough J B and Jin C Q 2012 Phys. Rev. B 85 184430
[2] Perry R S et al. 2001 Phys. Rev. Lett. 86 2661
[3] Sokolov D A et al. 2019 Nat. Phys. 15 671
[4] Borzi R A, Grigera S A, Farrell J, Perry R S, Lister S J S, Lee S L, Tennant D A, Maeno Y and Mackenzie A P 2007 Science 315 214
[5] Lester C et al. 2015 Nat. Mater. 14 373
[6] Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657
[7] Pustogow A et al. 2019 Nature 574 72
[8] Mizokawa T, Tjeng L H, Sawatzky G A, Ghiringhelli G, Tjernberg O, Brookes N B, Fukazawa H, Nakatsuji S and Maeno Y 2001 Phys. Rev. Lett. 87 077202
[9] Nakamura F, Sakaki M, Yamanaka Y, Tamaru S, Suzuki T and Maeno Y 2013 Sci. Rep. 3 2536
[10] Cao G, McCall S, Crow J E and Guertin R P 1997 Phys. Rev. Lett. 78 1751
[11] Xing H et al. 2018 Phys. Rev. B 97 041113(R)
[12] Horio M et al. 2019 arXiv:1911.12163 [cond-mat.str-el]
[13] Puggioni D, Horio M, Chang J and Rondinelli J M 2020 Phys. Rev. Res. 2 023141
[14] Markovic I et al. 2020 Proc. Natl. Acad. Sci. USA 117 15524
[15] Yoshida Y, Ikeda S I, Matsuhata H, Shirakawa N, Lee C H and Katano S 2005 Phys. Rev. B 72 054412
[16] Jin Z and Ku W 2018 arXiv:1809.04589 [cond-mat.str-el]
[17] Lei S et al. 2018 Nano Lett. 18 3088
[18] Cao G and Schlottmann P 2008 Mod. Phys. Lett. B 22 1785
[19] Iliev M N, Jandl S, Popov V N, Litvinchuk A P, Cmaidalka J, Meng R L and Meen J 2005 Phys. Rev. B 71 214305
[20] Fobes D, Peng J, Qu Z, Liu T J and Mao Z Q 2011 Phys. Rev. B 84 014406
[21] Weightman P, Martin D S, Cole R J and Farrell T 2005 Rep. Prog. Phys. 68 1251
[22] Kaminsky W, Claborn K and Kahr B 2004 Chem. Soc. Rev. 33 514
[23] Rubio-Marcos F, Del Campo A, Marchet P and Fernández J F 2015 Nat. Commun. 6 6594
[24] Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[25] Tanatar M A et al. 2016 Phys. Rev. Lett. 117 127001
[26] Tanatar M A, Kreyssig A, Nandi S, Ni N, Bud'ko S L, Canfield P C, Goldman A I and Prozorov R 2009 Phys. Rev. B 79 180508(R)
[27] Xue Y, Zhang Y and Zhang P H 2009 Phys. Rev. B 79 205113
[28] Smith T and Guild J 1931 Trans. Opt. Soc. 33 73
[29] Lee J S, Moon S J, Yang B J, Yu J J, Schade U, Yoshida Y, Ikeda S I and Noh T W 2007 Phys. Rev. Lett. 98 097403
[30] Fairman H S, Brill M H and Hemmendinger H 1997 Color Res. Appl. 22 11
[31]Hutchings D C 2004 Applied Nonlinear Optics (Glasgow: University of Glasgow)
[32] Plummer E W, Ismail, Matzdorf R, Melechko A V, Pierce J P and Zhang J D 2002 Surf. Sci. 500 1
[33] Kim T H, Angst M, Hu B, Jin R, Zhang X G, Wendelken J F, Plummer E W and Li A P 2010 Proc. Natl. Acad. Sci. USA 107 5272
[34] Zhang J et al. 2019 Phys. Rev. X 9 011032
[35] Gangshettiwar A, Zhu Y, Jiang Z, Peng J, Wang Y, He J, Zhou J, Mao Z and Lai K 2020 Phys. Rev. B 101 201106
Related articles from Frontiers Journals
[1] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 106102
[2] Sheng Jiang, Jing Liu, Xiao-Dong Li, Yan-Chun Li, Shang-Ming He, Ji-Chao Zhang. High-Pressure Phase Transitions of Cubic Y$_{2}$O$_{3}$ under High Pressures by In-situ Synchrotron X-Ray Diffraction[J]. Chin. Phys. Lett., 2019, 36(4): 106102
[3] Jun-Ying Zhang, Shu-Juan Han, Lin-Tao Liu, Qian Yao, Wei-Min Dong, Jing Li. Crystal Structure and Judd–Ofelt Analysis of Er$^{3+}$ Doped LuAl$_{3}$(BO$_{3}$)$_{4}$ Crystal[J]. Chin. Phys. Lett., 2018, 35(9): 106102
[4] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 106102
[5] Yun-Peng Gao, Wan-Qing Dong, Gong Li, Ri-Ping Liu. Influence of Pressure on the Annealing Process of $\beta$-Ca$_{2}$SiO$_{4}$(C$_{2}$S) in Portland Cement[J]. Chin. Phys. Lett., 2018, 35(3): 106102
[6] Hu Cheng, Yan-Chun Li, Gong Li, Xiao-Dong Li. Structural Phase Transitions of ZnTe under High Pressure Using Experiments and Calculations[J]. Chin. Phys. Lett., 2016, 33(09): 106102
[7] Yan-Chun Hu, Ya-Wen Cui, Xian-Wei Wang, Yi-Pu Liu. Effect of Quench Treatment on Fe/Mo Order and Magnetic Properties of Double Perovskite Sr$_{2}$FeMoO$_{6}$[J]. Chin. Phys. Lett., 2016, 33(02): 106102
[8] LI Yan-Chun, LI Gong, LIN Chuan-Long, LI Xiao-Dong, LIU Jing. High-Pressure Phase Transitions of PbTe Using the First-Principles Calculations[J]. Chin. Phys. Lett., 2015, 32(01): 106102
[9] SHAO Xi. Indication of Low-Energy BC5 Structures[J]. Chin. Phys. Lett., 2010, 27(1): 106102
[10] GAO Feng, JIA Xiao-Peng, MA Hong-An, GUO Wei, LIU Xiao-Bing. Hetero-Epitaxial Diamond Single Crystal Growth on Surface of cBN Single Crystals at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2008, 25(6): 106102
[11] ZHANG Yu-Feng, ZHANG Fan, GAO Qiao-Jun, YU Da-Peng, PENG Xiao-Fu, LIN Zeng-Dong. Synthesis of Nano-Crystalline Diamond Film in Hot Filament Chemical Vapour Deposition by Adding Ar[J]. Chin. Phys. Lett., 2001, 18(2): 106102
[12] ZHANG Fan, ZHANG Yu-Feng, GAO Qiao-Jun, ZHANG Shu-Lin, LIN Ting, PENG Xiao-Fu, LIN Zeng-Dong. Synthesis of Nano-crystalline Diamond Films[J]. Chin. Phys. Lett., 2000, 17(5): 106102
[13] WU Feng, ZHANG Shu-yuan, CHEN Zhi-wen, TAN Shun. Crystallization and Fractal Formation in Annealed Al/a-Ge Bilayer Films[J]. Chin. Phys. Lett., 1997, 14(10): 106102
[14] TAN Qi. Ordering and Reordering of Nanophase FeAl Intermetallics Synthesized by Mechanical Alloying[J]. Chin. Phys. Lett., 1996, 13(11): 106102
Viewed
Full text


Abstract