Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 086201    DOI: 10.1088/0256-307X/36/8/086201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins
Yan-Xing Shang1,2†, Fang Hong1†, Jian-Hong Dai1†, Hui-Yu1,2, Ya-Nan Lu1,2, En-Ke Liu1,3, Xiao-Hui Yu1,3**, Gang-Qin Liu1**, Xin-Yu Pan1,3,4**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
3Songshan Lake Materials Laboratory, Dongguan 523808
4CAS Center of Excellence in Topological Quantum Computation, Beijing 100190
Cite this article:   
Yan-Xing Shang, Fang Hong, Jian-Hong Dai et al  2019 Chin. Phys. Lett. 36 086201
Download: PDF(1001KB)   PDF(mobile)(1005KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The diamond anvil cell-based high-pressure technique is a unique tool for creating new states of matter and for understanding the physics underlying some exotic phenomena. In situ sensing of spin and charge properties under high pressure is crucially important but remains technically challenging. While the nitrogen-vacancy (NV) center in diamond is a promising quantum sensor under extreme conditions, its spin dynamics and the quantum control of its spin states under high pressure remain elusive. In this study, we demonstrate coherent control, spin relaxation, and spin dephasing measurements for ensemble NV centers up to 32.8 GPa. With this in situ quantum sensor, we investigate the pressure-induced magnetic phase transition of a micron-size permanent magnet Nd$_{2}$Fe$_{14}$B sample in a diamond anvil cell, with a spatial resolution of $\sim$2 μm, and sensitivity of $\sim$20 $\mu$T/Hz$^{1/2}$. This scheme could be generalized to measure other parameters such as temperature, pressure and their gradients under extreme conditions. This will be beneficial for frontier research of condensed matter physics and geophysics.
Received: 09 July 2019      Published: 22 July 2019
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  76.70.Hb (Optically detected magnetic resonance (ODMR))  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Supported by the National Basic Research Program of China under Grant No 2015CB921103, the National Key R&D Program of China under Grant No 2016YFA0401503, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000, the National Natural Science Foundation of China under Grant Nos 11574386, 11575288 and 51402350, and the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2016006.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/086201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/086201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Xing Shang
Fang Hong
Jian-Hong Dai
Hui-Yu
Ya-Nan Lu
En-Ke Liu
Xiao-Hui Yu
Gang-Qin Liu
Xin-Yu Pan
[1]Mao H K, Chen X J, Ding Y, Li B and Wang L 2018 Rev. Mod. Phys. 90 015007
[2]Kuhs W F, Finney J L, Vettier C and Bliss D V 1984 J. Chem. Phys. 81 3612
[3]Santoro M, Gregoryanz E, Mao H and Hemley R J 2004 Phys. Rev. Lett. 93 265701
[4]Dalladay-Simpson P, Howie R T and Gregoryanz E 2016 Nature 529 63
[5]Hamlin J J 2015 Physica C 514 59
[6]Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[7]Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[8]Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[9]Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[10]Jayaraman A 1983 Rev. Mod. Phys. 55 65
[11]Alireza P L and Julian S R 2003 Rev. Sci. Instrum. 74 4728
[12]Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg Lloyd C Łand Prawer S 2014 Phys. Rev. Lett. 112 047601
[13]Acosta V M, Bouchard L S, Budker D, Folman R, Lenz T, Maletinsky P, Rohner D, Schlussel Y and Thiel L 2019 J. Supercond. Novel Magn. 32 85
[14]Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[15]Casola F, Van Der Sar T and Yacoby A 2018 Nat. Rev. Mater. 3 17088
[16]Liu G Q, Feng X, Wang N, Li Q and Liu R B 2019 Nat. Commun. 10 1344
[17]Aslam N, Pfender M, Stöhr R, Neumann P, Scheffler M, Sumiya H, Abe H, Onoda S, Ohshima T, Isoya J and Wrachtrup J 2015 Rev. Sci. Instrum. 86 064704
[18]Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R and Yao N Y 2018 arXiv:1812.08796v1
[19]Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P and Roch J F 2018 arXiv:1812.09894v1
[20]Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K and Yang S 2018 arXiv:1812.10116v1
[21]Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S and Budker D 2010 Phys. Rev. Lett. 104 070801
[22]Schirhagl R, Chang K, Loretz M and Degen C L 2014 Annu. Rev. Phys. Chem. 65 83
[23]Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P and Jacques V 2014 Rep. Prog. Phys. 77 056503
[24]Zhao N, Hu J L, Ho S W, Wan J T K and Liu R B 2011 Nat. Nanotechnol. 6 242
[25]Arai K, Belthangady C, Zhang H, Bar-Gill N, DeVience S J, Cappellaro P, Yacoby A and Walsworth R L 2015 Nat. Nanotechnol. 10 859
[26]Boss J M, Cujia K S, Zopes J and Degen C L 2017 Science 356 837
[27]Schmitt S, Gefen T, Stürner F M, Unden T, Wolff G, Müller C, Scheuer J, Naydenov B, Markham M, Pezzagna S, Meijer J, Schwarz I, Plenio M, Retzker A, McGuinness L P and Jelezko F 2017 Science 356 832
[28]Pfender M, Wang P, Sumiya H, Onoda S, Yang W, Dasari D B R, Neumann P, Pan X Y, Isoya J, Liu R B and Wrachtrup J 2019 Nat. Commun. 10 594
[29]Mao H K and Bell P M 1976 Science 191 851
[30]Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M and Yamauchi H 1986 J. Appl. Phys. 59 873
[31]Nordström L, Johansson B and Brooks M S S 1991 J. Appl. Phys. 69 5708
[32]Kamarád J, Arnold Z and Schneider J 1987 J. Magn. Magn. Mater. 67 29
[33]Toga Y, Matsumoto M, Miyashita S, Akai H, Doi S, Miyake T and Sakuma A 2016 Phys. Rev. B 94 174433
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 086201
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 086201
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 086201
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 086201
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 086201
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 086201
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 086201
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 086201
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 086201
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 086201
[11] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 086201
[12] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 086201
[13] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 086201
[14] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 086201
[15] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 086201
Viewed
Full text


Abstract