Chin. Phys. Lett.  2019, Vol. 36 Issue (8): 080305    DOI: 10.1088/0256-307X/36/8/080305
GENERAL |
Quantum Approach to Fast Protein-Folding Time
Li-Hua Lu1, You-Quan Li1,2**
1Zhejiang Province Key Laboratory of Quantum Technology & Device, and Department of Physics, Zhejiang University, Hangzhou 310027
2Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210008
Cite this article:   
Li-Hua Lu, You-Quan Li 2019 Chin. Phys. Lett. 36 080305
Download: PDF(1996KB)   PDF(mobile)(2394KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the traditional random-conformational-search model, various hypotheses with a series of meta-stable intermediate states were proposed to resolve the Levinthal paradox in protein-folding time. Here we introduce a quantum strategy to formulate protein folding as a quantum walk on a definite graph, which provides us a general framework without making hypotheses. Evaluating it by the mean of first passage time, we find that the folding time via our quantum approach is much shorter than the one obtained via classical random walks. This idea is expected to evoke more insights for future studies.
Received: 26 July 2019      Published: 30 July 2019
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  87.15.hm (Folding dynamics)  
  05.40.Fb (Random walks and Levy flights)  
Fund: Supported by National Key R&D Program of China under Grant No 2017YFA0304304, and partially by the Fundamental Research Funds for the Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/8/080305       OR      https://cpl.iphy.ac.cn/Y2019/V36/I8/080305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Hua Lu
You-Quan Li
[1]Harrington W F and Schellman J A 1956 C R Trav Lab Carlsberg Chim. 30 21
[2]Levinthal C 1968 J. Chem. Phys. 65 44
[3]Mallamace F, Corsaro C, D Mallamace et al 2016 Proc. Natl. Acad. Sci. USA 113 3159
[4]Portman J J, Takada S and Wolynes P G 1998 Phys. Rev. Lett. 81 5237
[5]Jacksom S E 1998 Folding Des. 3 R81
[6]Wolynes P G, Eaton W A and Fersht A R 2012 Proc. Natl. Acad. Sci. USA 109 17770
[7]Mũnoz V and Eaton W A 1999 Proc. Natl. Acad. Sci. USA 96 11311
[8]Henry E R and Eqton W A 2004 Chem. Phys. 307 163
[9]Englander S W and Mayne L 2017 Proc. Natl. Acad. Sci. USA 114 8253
[10]Karplus M and Weaver D L 1976 Nature 260 404
[11]Sali A, Shakhnovich E and Karplus M 1994 Nature 369 248
[12]Guo Z Y and Thirumalai D 1995 Biopolymers 36 83
[13]Fersht A R 2000 Proc. Natl. Acad. Sci. USA 97 1525
[14]Oliveberg M and Wolynes P G 2005 Q. Rev. Biophys. 38 245
[15]Shakhnovich E 2006 Chem. Rev. 106 1559
[16]Dill K A and MacCallum J L 2012 Science 338 1042
[17]Thirumalai D, Liu Z X, O'Brien E P and Reddy G 2013 Curr. Opin. Struct. Biol. 23 22
[18]Piana S, Lindorff-Larsen K and Shaw D E 2012 Proc. Natl. Acad. Sci. USA 109 17845
[19]Henry E R, Best R B and Eaton W A 2013 Proc. Natl. Acad. Sci. USA 110 17880
[20]Snow C D, Nguyen H, Pande V and Gruebele M 2002 Nature 420 102
[21]Rocklin G J et al 2017 Science 357 168
[22]Mũnoz V 2014 Proc. Natl. Acad. Sci. USA 111 15863
[23]Taketomi H, Ueda Y and Go N 1975 Int. J. Peptide Protein Res. 7 445
[24]Dill K A 1985 Biochemistry 24 1501
[25]Li H, Helling R, Tang C and Wingreen N S 1996 Science 273 666
[26]Li Y Q, Ji Y Y, Mao J W and Tang X W 2005 Phys. Rev. E 72 021904
[27]van Kampen N G 1997 Stochastic Processes in Physics, Chemistry (revised edition) (Amsterdam: North-Holland)
[28]Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[29]Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
[30]Manouchehri K and Wang J B 2014 Physical Implementation of Quantum Walks (Berlin: Springer-Verlag)
[31]Anfinsen C B 1973 Science 181 223
[32]Shakhnovich E and Gutin A 1990 J. Chem. Phys. 93 5967
[33]Socci N D and Onuchic J N 1994 J. Chem. Phys. 101 1519
[34]Socci N D, Onuchic J N and Wolynes P G 1996 J. Chem. Phys. 104 5860
[35]Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167
[36]Lindblad G 1976 Commun. Math. Phys. 48 119
[37]Montroll E W 1969 J. Math. Phys. 10 753
[38]Redner S 2001 A Guide to First-Passage Processes (Cambridge: Cambridge University Press)
[39]Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701
[40]Condamin S, Benichou O, Tejedor V, Voituriez R, Klafter J 2007 Nature 450 77
[41]Guerin T, Levernier N, Benichou O and Voituriez R 2016 Nature 534 356
[42]Duan Y and Kollman P A 1998 Science 282 740
[43]Christopher C M, Christopher C P and Dutton P L 2006 Philos. Trans. R. Soc. B 361 1295
[44]Xiao L et al 2017 Nat. Phys. 13 1117
Related articles from Frontiers Journals
[1] Bin-Lin Chen and Dan-Bo Zhang. Variational Quantum Eigensolver with Mutual Variance-Hamiltonian Optimization[J]. Chin. Phys. Lett., 2023, 40(1): 080305
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 080305
[3] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 080305
[4] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 080305
[5] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 080305
[6] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 080305
[7] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 080305
[8] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 080305
[9] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 080305
[10] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 080305
[11] Bo-Wen Ma, Wan-Su Bao, Tan Li, Feng-Guang Li, Shuo Zhang, Xiang-Qun Fu. A Four-Phase Improvement of Grover's Algorithm[J]. Chin. Phys. Lett., 2017, 34(7): 080305
[12] Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei. Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source[J]. Chin. Phys. Lett., 2016, 33(10): 080305
[13] Xing Chen, Zhen-Wei Zhang, Huan Zhao, Nuan-Rang Wang, Ren-Fu Yang, Ke-Ming Feng. Exact Solution to Spin Squeezing of the Arbitrary-Range Spin Interaction and Transverse Field Model[J]. Chin. Phys. Lett., 2016, 33(10): 080305
[14] SONG Xiao-Tian, LI Hong-Wei, YIN Zhen-Qiang, LIANG Wen-Ye, ZHANG Chun-Mei, HAN Yun-Guang, CHEN Wei, HAN Zheng-Fu. Phase-Coding Self-Testing Quantum Random Number Generator[J]. Chin. Phys. Lett., 2015, 32(08): 080305
[15] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 080305
Viewed
Full text


Abstract