Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 077102    DOI: 10.1088/0256-307X/36/7/077102
Single Crystal Growth and Magnetoresistivity of Topological Semimetal CoSi
D. S. Wu1,2, Z. Y. Mi1,2, Y. J. Li1,2, W. Wu1,2, P. L. Li1,2, Y. T. Song1,2, G. T. Liu1,2,3, G. Li1,2,3**, J. L. Luo1,2,3**
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
3Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
D. S. Wu, Z. Y. Mi, Y. J. Li et al  2019 Chin. Phys. Lett. 36 077102
Download: PDF(1044KB)   PDF(mobile)(1039KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report single crystal growth of CoSi, which has recently been recognized as a new type of topological semimetal hosting fourfold and sixfold degenerate nodes. The Shubnikov–de Haas quantum oscillation (QO) is observed on our crystals. There are two frequencies originating from almost isotropic bulk electron Fermi surfaces, in accordance with band structure calculations. The effective mass, scattering rate, and QO phase difference of the two frequencies are extracted and discussed.
Received: 07 May 2019      Published: 20 June 2019
PACS:  71.20.Be (Transition metals and alloys)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  72.15.-v (Electronic conduction in metals and alloys)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11874399, and the National Key Research and Development Program of China under Grant No 2016YFA0300602.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
D. S. Wu
Z. Y. Mi
Y. J. Li
W. Wu
P. L. Li
Y. T. Song
G. T. Liu
G. Li
J. L. Luo
[1]Sakai A, Ishii F, Onose Y, Tomioka Y, Yotsuhashi S, Adachi H, Nagaosa N and Tokura Y 2007 J. Phys. Soc. Jpn. 76 093601
[2]Longhin M, Rizza M, Viennois R and Papet P 2017 Intermetallics 88 46
[3]Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037
[4]Tang P, Zhou Q and Zhang S C 2017 Phys. Rev. Lett. 119 206402 (and the supplementary material therein)
[5]Chang G, Xu S Y, Wieder B J, Sanchez D S, Huang S M, Belopolski I, Chang T R, Zhang S, Bansil A, Lin H and Hasan M Z 2017 Phys. Rev. Lett. 119 206401
[6]Zhang T, Song Z, Alexandradinata A, Weng H, Fang C, Lu L and Fang Z 2018 Phys. Rev. Lett. 120 016401
[7]Takane D, Wang Z, Souma S, Nakayama K, Nakamura T, Oinuma H, Nakata Y, Iwasawa H, Cacho C, Kim T, Horiba K, Kumigashira H, Takahashi T, Ando Y and Sato T 2019 Phys. Rev. Lett. 122 076402
[8]Rao Z C, Li H, Zhang T T, Tian S J, Li C H and Fu B B 2019 Nature 567 496
[9]Sanchez D S, Belopolski I, Cochran T A, Xu X, Yin J X, Chang G and Xie W 2019 Nature 567 500
[10]Ishida K, Nishizawa T and Schlesinger M E 1991 J. Phase Equilib. 12 578
[12]Stishov S M, Petrova A E, Sidorov V A and Menzel D 2012 Phys. Rev. B 86 064433
[13]Amamou A, Bach P, Gautier F, Robert C and Castaing J 1972 J. Phys. Chem. Solids 33 1697
[14]Narozhnyi V N and Krasnorussky V N 2013 J. Exp. Theor. Phys. 116 780 (and reference therein)
[15]Burkov A T, Novikov S V, Zaitsev V K and Reith H 2017 Semiconductors 51 689
[16]Petrova A E, Krasnorussky V N, Shikov A A, Yuhasz W M, Lograsso T A, Lashley J C and Stishov S M 2010 Phys. Rev. B 82 155124
[17]Ohta H, Arioka T, Kulatov E, Mitsudo S and Motokawa M 1998 J. Magn. Magn. Mater. 177–181 1371
[18]Ou-Yang T Y, Shu G J and Fuh H R 2017 Europhys. Lett. 120 17002
[19]D van der Marel, Damascelli A, Schulte K and Menovsky A 1998 Physica B 244 138
[20]Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[21]Cvijović D 2011 Theor. Math. Phys. 166 37
[22]Xu X T and Jia S 2016 Chin. Phys. B 25 117204
[23]Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University)
[24]Pshenay-Severin D A, Ivanov Y V, Burkov A A and Burkov A T 2018 J. Phys.: Condens. Matter 30 135501
[25]Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490 (and the supplementary materials therein)
[26]Asanabe S, Shinoda D and Sasaki Y 1964 Phys. Rev. 134 A774
[27]He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402
[28]Alexandradinata A, Wang C, Duan W and Glazman L 2018 Phys. Rev. X 8 011027
[29]Xu X, Wang X, Cochran T A, Sanchez D S, Belopolski I, Wang G, Liu Y, Tien H J, Gui X, Xie W, Hasan M Z, Chang T R and Jia S 2019 arXiv:1904.00630
Related articles from Frontiers Journals
[1] Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu, Xuefeng Wang. Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films[J]. Chin. Phys. Lett., 2020, 37(1): 077102
[2] Xiang-Wei Huang, Xiao-Xiong Liu, Peng Yu, Pei-Ling Li, Jian Cui, Jian Yi, Jian-Bo Deng, Jie Fan, Zhong-Qing Ji, Fan-Ming Qu, Xiu-Nian Jing, Chang-Li Yang, Li Lu, Zheng Liu, Guang-Tong Liu. Magneto-Transport and Shubnikov–de Haas Oscillations in the Type-II Weyl Semimetal Candidate NbIrTe$_{4}$ Flake[J]. Chin. Phys. Lett., 2019, 36(7): 077102
[3] Lin Feng, Xue-Ying Zhang. First-Principles Investigation on the Fully Compensated Ferrimagnetic Behavior in Ti$_{2}$NbSb and TiZrNbSb[J]. Chin. Phys. Lett., 2019, 36(6): 077102
[4] J. E. Taylor, Z. Zhang, G. Cao, L. H. Haber, R. Jin, E. W. Plummer. Electronic Phase Transition of IrTe$_{2}$ Probed by Second Harmonic Generation[J]. Chin. Phys. Lett., 2018, 35(9): 077102
[5] Ning-Ning Zu, Rui Li, Ya-Hui Zheng, Lin Chen. First-Principles Calculation for the Half Metallic Properties of La$_{2}$NbMnO$_{6}$[J]. Chin. Phys. Lett., 2017, 34(10): 077102
[6] YI Zhi-Jun. Quasi-Particle Properties in Copper Using the GW Approximation[J]. Chin. Phys. Lett., 2015, 32(01): 077102
[7] H. A. Rahnamaye Aliabad, M. Bazrafshan, H. Vaezi, Masood Yousaf, Junaid Munir, M. A. Saeed. Optoelectronic Properties of Pure and Co Doped Indium Oxide by Hubbard and modified Becke–Johnson Exchange Potentials[J]. Chin. Phys. Lett., 2013, 30(12): 077102
[8] QI Chen-Jin, FENG Jing, ZHOU Rong-Feng, JIANG Ye-Hua, ZHOU Rong. First Principles Study on the Stability and Mechanical Properties of MB (M=V, Nb and Ta) Compounds[J]. Chin. Phys. Lett., 2013, 30(11): 077102
[9] TANG Chun-Mei, ZHU Wei-Hua, ZHANG Ai-Mei, ZHANG Kai-Xiao, LIU Ming-Yi . A Density Functional Study of the Gold Cages MAu16 (M = Si, Ge, and Sn)[J]. Chin. Phys. Lett., 2013, 30(7): 077102
[10] LIU Yue-Lin, GAO An-Yuan, LU Wei, ZHOU Hong-Bo, ZHANG Ying. Optimal Electron Density Mechanism for Hydrogen on the Surface and at a Vacancy in Tungsten[J]. Chin. Phys. Lett., 2012, 29(7): 077102
[11] LIU Yue-Lin, ZHOU Hong-Bo, JIN Shuo, ZHANG Ying, LU Guang-Hong . Effects of H on Electronic Structure and Ideal Tensile Strength of W: A First-Principles Calculation[J]. Chin. Phys. Lett., 2010, 27(12): 077102
[12] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 077102
[13] CHEN Jie, LI Yan, SHANG Jia-Xiang, XU Hui-Bin. Site Preference and Alloying Effect of Excess Ni in Ni-Mn-Ga Shape Memory Alloys[J]. Chin. Phys. Lett., 2009, 26(4): 077102
[14] SUN Li-Li, JI Guang-Fu, CHEN Xiang-Rong, GOU Qing-Quan. Structural and Thermodynamic Properties of Cerium via First-Principles Plane Wave Method with a Relativistic Analytic Pseudopotential[J]. Chin. Phys. Lett., 2009, 26(1): 077102
[15] ZHAO Jian-Zhi, WANG Guang-Tao, LIANG Yong-Cheng. Mechanical Properties and Electronic Structures of Cotunnite TiO2[J]. Chin. Phys. Lett., 2008, 25(12): 077102
Full text