Chin. Phys. Lett.
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe
C. Chen1,2†, Q. Liu1,2,3†, T. Z. Zhang1,2, D. Li4, P. P. Shen4, X. L. Dong4, Z.-X. Zhao4, T. Zhang1,2**, D. L. Feng1,2,5**
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433
2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
3Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908
4National Laboratory of Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
5Hefei National Laboratory for Physical Science at Microscale, CAS Center for Excellence in Quantum Information and Quantum Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
C. Chen, Q. Liu, T. Z. Zhang et al  2019 Chin. Phys. Lett. 36 057403
Download: PDF(1786KB)   PDF(mobile)(1796KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Majorana zero mode (MZM), which manifests as an exotic neutral excitation in superconductors, is the building block of topological quantum computing. It has recently been found in the vortices of several iron-based superconductors as a zero-bias conductance peak in tunneling spectroscopy. In particular, a clean and robust MZM has been observed in the cores of free vortices in (Li$_{0.84}$Fe$_{0.16}$)OHFeSe. Here using scanning tunneling spectroscopy, we demonstrate that Majorana-induced resonant Andreev reflection occurs between the STM tip and this zero-bias bound state, and consequently, the conductance at zero bias is quantized as $2e^{2}/h$. Our results present a hallmark signature of the MZM in the vortex of an intrinsic topological superconductor, together with its intriguing behavior.
Received: 08 April 2019      Published: 09 April 2019
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  74.70.Xa (Pnictides and chalcogenides)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: Supported by the National Natural Science Foundation of China, the National Key R&D Program of China under Grant Nos 2016YFA0300200, 2017YFA0303004 and 2017YFA0303003, and the Key Research of Frontier Sciences of CAS under Grant No QYZDY-SSW-SLH001.
Online First Date: 09 April 2019   
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/057403       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/057403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
C. Chen
Q. Liu
T. Z. Zhang
D. Li
P. P. Shen
X. L. Dong
Z.-X. Zhao
T. Zhang
D. L. Feng
[1]Alicea J 2012 Rep. Prog. Phys. 75 076501
[2]Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113
[3]Mourik V et al 2012 Science 336 1003
[4]Lutchyn R M, Sau J D and Sarma S D 2010 Phys. Rev. Lett. 105 077001
[5]Sau J D et al 2010 Phys. Rev. B 82 214509
[6]Oreg Y, Refael G and Oppen F V 2010 Phys. Rev. Lett. 105 177002
[7]Lutchyn R M et al 2018 Nat. Rev. Mater. 3 52
[8]Liu J et al 2012 Phys. Rev. Lett. 109 267002
[9]Pikulin D I et al 2012 New J. Phys. 14 125011
[10]Bagrets D, Altl and A 2012 Phys. Rev. Lett. 109 227005
[11]Kells G Meidan D and Brouwer P W 2012 Phys. Rev. B 86 100503
[12]Liu C X et al 2017 Phys. Rev. B 96 075161
[13]Law K T, Lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001
[14]Setiawan F et al 2017 Phys. Rev. B 96 184520
[15]Zhang H et al 2018 Nature 556 74
[16]Nayak C et al 2008 Rev. Mod. Phys. 80 1083
[17]Ivanov D A 2001 Phys. Rev. Lett. 86 268
[18]Liu C X et al 2019 arXiv:1901.06083
[19]Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[20]Wang Z et al 2015 Phys. Rev. B 92 115119
[21]Xu G et al 2016 Phys. Rev. Lett. 117 047001
[22]Sato M and AndoY 2017 Rep. Prog. Phys. 80 076501
[23]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[24]Ando Y and Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361
[25]Wang D F et al 2018 Science 362 333
[26]Liu Q et al 2018 Phys. Rev. X 8 041056
[27]Huang Y L et al 2017 Chin. Phys. Lett. 34 077404
[28]Kawakami T and Hu X 2015 Phys. Rev. Lett. 115 177001
Related articles from Frontiers Journals
[1] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 057403
[2] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 057403
[3] Hai Zi, Ling-Xiao Zhao, Xing-Yuan Hou, Lei Shan, Zhian Ren, Gen-Fu Chen, and Cong Ren. Pressure-Dependent Point-Contact Spectroscopy of Superconducting PbTaSe$_2$ Single Crystals[J]. Chin. Phys. Lett., 2020, 37(9): 057403
[4] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 057403
[5] Lai-Lai Li, Yue-Lei Zhao, Xi-Xiang Zhang, Young Sun. Possible Evidence for Spin-Transfer Torque Induced by Spin-Triplet Supercurrents[J]. Chin. Phys. Lett., 2018, 35(7): 057403
[6] Ai-Min Li, Lu-Dong, Xin-Yi Yang, Zhen Zhu, Guan-Yong Wang, Dan-Dan Guan, Hao Zheng, Yao-Yi Li, Canhua Liu, Dong Qian, Jin-Feng Jia. Metastable Face-Centered Cubic Structure and Structural Transition of Sn on 2H-NbSe$_{2}$ (0001)[J]. Chin. Phys. Lett., 2018, 35(6): 057403
[7] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 057403
[8] Lu-Bing Shao, Zi-Dan Wang, Rui Shen, Li Sheng, Bo-Gen Wang, Ding-Yu Xing. Controlling Fusion of Majorana Fermions in One-Dimensional Systems by Zeeman Field[J]. Chin. Phys. Lett., 2017, 34(6): 057403
[9] Bin-He Wu, Xu-Yu Feng, Chao Wang, Xiao-Feng Xu, Chun-Rui Wang. Anomalous Direct-Current Josephson Effect in Semiconductor Nanowire Junctions$^{*}$[J]. Chin. Phys. Lett., 2016, 33(01): 057403
[10] WU Bin-He, CHENG Xiao, WANG Chun-Rui, GONG Wei-Jiang. Probing Majorana Bound States in T-Shaped Junctions[J]. Chin. Phys. Lett., 2014, 31(03): 057403
[11] PENG Lin, CAI Chuan-Bing, LIU Yong-Sheng. Observation of Dynamic Behavior in YBa2Cu3O7−δ/La0.88Ca0.12MnO3 Using Femtosecond Optical Pulses[J]. Chin. Phys. Lett., 2014, 31(2): 057403
[12] LI Xiao-Wei . Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions[J]. Chin. Phys. Lett., 2011, 28(4): 057403
[13] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 057403
[14] HUANG Yan, WANG Yong-Lei, SHAN Lei, JIA Ying, YANG Huan, WEN Hai-Hu, ZHUANG Cheng-Gang, LI Qi, CUI Yi, XI Xiao-Xing,. Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy[J]. Chin. Phys. Lett., 2008, 25(6): 057403
[15] JI Yi-Qun, NIU Zhi-Ping, FENG Cui-Di, XING Ding-Yu. Spin-Triplet Andreev Reflection in Ferromagnet/Ferromangnet/s-Wave Superconductor Junctions[J]. Chin. Phys. Lett., 2008, 25(2): 057403
Viewed
Full text


Abstract