ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Manipulating the Flipping of Water Dipoles in Carbon Nanotubes |
Dang-Xin Mao1, Xiao-Gang Wang1, Guo-Quan Zhou1, Song-Wei Zeng2, Liang Chen1, Jun-Lang Chen1**, Chao-Qing Dai1 |
1Department of Optical Engineering, Zhejiang A&F University, Hangzhou 311300 2School of Information and Industry, Zhejiang A&F University, Hangzhou 311300
|
|
Cite this article: |
Dang-Xin Mao, Xiao-Gang Wang, Guo-Quan Zhou et al 2019 Chin. Phys. Lett. 36 103101 |
|
|
Abstract Flipping of water dipoles in carbon nanotubes is of great importance in many physical and biological applications, such as signal amplification, molecular switches and nano-gates. Ahead of these applications, understanding and inhibiting the non-negligible thermal noise is essential. Here, we use molecular dynamics simulations to show that the flipping frequency of water dipoles increases with the rising temperature, and the thermal noise can be suppressed by imposed charges and external uniform electric fields. Furthermore, the water dipoles flip periodically between two equiprobable and stable states under alternating electric fields. These two stable states may be adopted to store 0 and 1 bits for memory storage or molecular computing.
|
|
Received: 29 May 2019
Published: 21 September 2019
|
|
PACS: |
31.30.jp
|
(Electron electric dipole moment)
|
|
61.48.De
|
(Structure of carbon nanotubes, boron nanotubes, and other related systems)
|
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11875236, 61575178, 11574272 and U1832150, the Zhejiang Provincial Natural Science Foundation under Grant Nos LY16A040014 and LY18A040001, and the Zhejiang Provincial Science and Technology Project under Grant No LGN18C200017. |
|
|
[1] | Meng X W, Wang Y, Zhao Y J and Huang J P 2011 J. Phys. Chem. B 115 4768 | [2] | Li J, Gong X, Lu H, Li D, Fang H and Zhou R 2007 Proc. Natl. Acad. Sci. USA 104 3687 | [3] | Koenig D R, Weig E M and Kotthaus J P 2008 Nat. Nanotechnol. 3 482 | [4] | Ghosh S, Sood A and Kumar N J S 2003 Science 299 1042 | [5] | Litvinchuk S, Tanaka H, Miyatake T, Pasini D, Tanaka T, Bollot G, Mareda J and Matile S 2007 Nat. Mater. 6 576 | [6] | Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188 | [7] | Gong X, Li J, Lu H, Wan R, Li J, Hu J and Fang H 2007 Nat. Nanotechnol. 2 709 | [8] | Köfinger J, Hummer G and Dellago C 2008 Proc. Natl. Acad. Sci. USA 105 13218 | [9] | Wan R, Lu H, Li J, Bao J, Hu J and Fang H 2009 Phys. Chem. Chem. Phys. 11 9898 | [10] | Wan R, Li J, Lu H and Fang H 2005 J. Am. Chem. Soc. 127 7166 | [11] | Tu Y, Lu H, Zhang Y, Huynh T and Zhou R 2013 J. Chem. Phys. 138 015104 | [12] | Tu Y, Zhou R and Fang H 2010 Nanoscale 2 1976 | [13] | Tu Y, Xiu P, Wan R, Hu J, Zhou R and Fang H 2009 Proc. Natl. Acad. Sci. USA 106 18120 | [14] | Lv M, He B, Liu Z, Xiu P and Tu Y 2014 J. Chem. Phys. 141 044707 | [15] | Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926 | [16] | Berendsen H J C, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43 | [17] | Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435 | [18] | Darden T, York D and Pedersen L J T 1993 J. Chem. Phys. 98 10089 | [19] | Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577 | [20] | Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101 | [21] | Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463 | [22] | Miyamoto S and Kollman P A 1992 J. Comput. Chem. 13 952 | [23] | Zeng S, Chen J, Wang X, Zhou G, Chen L and Dai C 2018 J. Phys. Chem. C 122 27681 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|