Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 077401    DOI: 10.1088/0256-307X/35/7/077401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Possible Evidence for Spin-Transfer Torque Induced by Spin-Triplet Supercurrents
Lai-Lai Li1,3, Yue-Lei Zhao2**, Xi-Xiang Zhang2, Young Sun1,3**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
3School of Physical Science, University of Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Lai-Lai Li, Yue-Lei Zhao, Xi-Xiang Zhang et al  2018 Chin. Phys. Lett. 35 077401
Download: PDF(740KB)   PDF(mobile)(742KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mutual interplay between superconductivity and magnetism in superconductor/ferromagnet heterostructures may give rise to unusual proximity effects beyond current knowledge. Especially, spin-triplet Cooper pairs could be created at carefully engineered superconductor/ferromagnet interfaces. Here we report a giant proximity effect on spin dynamics in superconductor/ferromagnet/superconductor Josephson junctions. Below the superconducting transition temperature $T_{\rm C}$, the ferromagnetic resonance field at X-band ($\sim$9.0 GHz) shifts rapidly to a lower field with decreasing temperature. In strong contrast, this phenomenon is absent in ferromagnet/superconductor bilayers and superconductor/insulator/ferromagnet/superconductor multilayers. Such an intriguing phenomenon can not be interpreted by the conventional Meissner effect. Instead, we propose that the strong influence on spin dynamics could be due to spin-transfer torque associated with spin-triplet supercurrents in ferromagnetic Josephson junctions with precessing magnetization.
Received: 21 June 2018      Published: 24 June 2018
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51725104 and 11534015, and the National Key Research and Development Program of China under Grant No 2016YFA0300700. Y.S. also acknowledges the support from Chinese Academy of Sciences under Grant No XDB07030200.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/077401       OR      http://cpl.iphy.ac.cn/Y2018/V35/I7/077401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lai-Lai Li
Yue-Lei Zhao
Xi-Xiang Zhang
Young Sun
[1]Linder J and Robinson J W A 2015 Nat. Phys. 11 307
[2]Matthias E 2015 Rep. Prog. Phys. 78 104501
[3]Bergeret F S, Volkov A F and Efetov K B 2005 Rev. Mod. Phys. 77 1321
[4]Eschrig M and Löfwander T 2008 Nat. Phys. 4 138
[5]Eremin I, Nogueira F S and Tarento R J 2006 Phys. Rev. B 73 054507
[6]Houzet M and Buzdin A I 2007 Phys. Rev. B 76 060504(R)
[7]Alidoust M, Linder J, Rashedi G et al 2010 Phys. Rev. B 81 014512
[8]Halász G B, Blamire M G and Robinson J W A 2011 Phys. Rev. B 84 024517
[9]Trifunovic L, Popovic Z and Radovic Z 2011 Phys. Rev. B 84 064511
[10]Mal'shukov A G and Brataas A 2012 Phys. Rev. B 86 094517
[11]Bergeret F S and Tokatly I V 2014 Phys. Rev. B 89 134517
[12]Loder F, Kampf A P and Kopp T 2013 J. Phys.: Condens. Matter 25 362201
[13]Jacobsen S H and Linder J 2015 Phys. Rev. B 92 024501
[14]Smidman M, Salamon M B, Yuan H Q et al 2017 Rep. Prog. Phys. 80 036501
[15]Keizer R S, Goennenwein S T, Klapwijk T M et al 2006 Nature 439 825
[16]Anwar M S, Czeschka F, Hesselberth M et al 2010 Phys. Rev. B 82 100501(R)
[17]Khaire S T, Khasawneh M, Pratt W P Jr et al 2010 Phys. Rev. Lett. 104 137002
[18]Robinson J W, Witt J D S and Blamire M G 2010 Science 329 59
[19]Sprungmann D, Westerholt K, Zabel H et al 2010 Phys. Rev. B 82 060505(R)
[20]Banerjee N, Robinson J W and Blamire M G 2014 Nat. Commun. 5 4771
[21]Ralpha D C and Stiles M D 2008 J. Magn. Magn. Mater. 320 1190
[22]Bell C, Milikisyants S, Huber M et al 2008 Phys. Rev. Lett. 100 047002
[23]Zhao E and Sauls J 2008 Phys. Rev. B 78 174511
[24]Konschelle F and Buzdin A 2009 Phys. Rev. Lett. 102 017001
[25]Sacramento P D and Araujo M A N 2010 Eur. Phys. J. B 76 251
[26]Linder J and Yokoyama T 2011 Phys. Rev. B 83 012501
[27]Hoffman S, Blanter Y M and Tserkovnyak Y 2012 Phys. Rev. B 86 054427
[28]Takahashi S, Hikino S, Mori M et al 2007 Phys. Rev. Lett. 99 057003
[29]Houzet M 2008 Phys. Rev. Lett. 101 057009
[30]Holmqvist C, Teber S and Fogelström M 2011 Phys. Rev. B 83 104521
[31]Holmqvist C, Belzig W and Fogelström M 2012 Phys. Rev. B 86 054519
[32]Wu H, Ni J, Cai J et al 2007 Phys. Rev. B 76 024416
[33]Zou T, Wu H, Cheng Z et al 2010 J. Magn. Magn. Mater. 322 169
Related articles from Frontiers Journals
[1] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 077401
[2] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 077401
[3] Ai-Min Li, Lu-Dong, Xin-Yi Yang, Zhen Zhu, Guan-Yong Wang, Dan-Dan Guan, Hao Zheng, Yao-Yi Li, Canhua Liu, Dong Qian, Jin-Feng Jia. Metastable Face-Centered Cubic Structure and Structural Transition of Sn on 2H-NbSe$_{2}$ (0001)[J]. Chin. Phys. Lett., 2018, 35(6): 077401
[4] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 077401
[5] Lu-Bing Shao, Zi-Dan Wang, Rui Shen, Li Sheng, Bo-Gen Wang, Ding-Yu Xing. Controlling Fusion of Majorana Fermions in One-Dimensional Systems by Zeeman Field[J]. Chin. Phys. Lett., 2017, 34(6): 077401
[6] Bin-He Wu, Xu-Yu Feng, Chao Wang, Xiao-Feng Xu, Chun-Rui Wang. Anomalous Direct-Current Josephson Effect in Semiconductor Nanowire Junctions$^{*}$[J]. Chin. Phys. Lett., 2016, 33(01): 077401
[7] WU Bin-He, CHENG Xiao, WANG Chun-Rui, GONG Wei-Jiang. Probing Majorana Bound States in T-Shaped Junctions[J]. Chin. Phys. Lett., 2014, 31(03): 077401
[8] PENG Lin, CAI Chuan-Bing, LIU Yong-Sheng. Observation of Dynamic Behavior in YBa2Cu3O7−δ/La0.88Ca0.12MnO3 Using Femtosecond Optical Pulses[J]. Chin. Phys. Lett., 2014, 31(2): 077401
[9] LI Xiao-Wei . Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions[J]. Chin. Phys. Lett., 2011, 28(4): 077401
[10] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 077401
[11] HUANG Yan, WANG Yong-Lei, SHAN Lei, JIA Ying, YANG Huan, WEN Hai-Hu, ZHUANG Cheng-Gang, LI Qi, CUI Yi, XI Xiao-Xing,. Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy[J]. Chin. Phys. Lett., 2008, 25(6): 077401
[12] JI Yi-Qun, NIU Zhi-Ping, FENG Cui-Di, XING Ding-Yu. Spin-Triplet Andreev Reflection in Ferromagnet/Ferromangnet/s-Wave Superconductor Junctions[J]. Chin. Phys. Lett., 2008, 25(2): 077401
[13] QIN Zhi-Jie, HU Dong-Sheng, XIONG Shi-Jie. Effects of Induced Flux on Andreev Levels in a Quantum Point Contact Embedded in Superconducting Ring[J]. Chin. Phys. Lett., 2004, 21(5): 077401
Viewed
Full text


Abstract