Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 070502    DOI: 10.1088/0256-307X/35/7/070502
GENERAL |
Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method
Jia Li, Zhao-Liang Wang**, Gui-Ce Yao
Energy and Power Department, China University of Petroleum (East China), Qingdao 266580
Cite this article:   
Jia Li, Zhao-Liang Wang, Gui-Ce Yao 2018 Chin. Phys. Lett. 35 070502
Download: PDF(767KB)   PDF(mobile)(760KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is essential to obtain thermophysical properties of methane hydrate precisely with a freestanding probe for modeling and predicting thermal transport in gas hydrates. A method with a freestanding 3$\omega$ probe is presented to reconstruct the intrinsic thermal conductivity, thermal diffusivity, and thermal contact resistance of methane hydrate. Isolated from the thermal contact resistance, the intrinsic thermal conductivity of methane hydrate decreases between 250 K and 280 K and is 41% larger than the effective value at 253 K. More importantly, when the thermal contact resistance is isolated, the temperature dependence of intrinsic thermal conductivity shows a converse trend with the generally accepted glass-like feature at high temperature. Otherwise, thermal contact resistances measured in the experiment between the freestanding 3$\omega$ probe and the methane hydrate sample are extraordinary large. The freestanding 3$\omega$ method in this work is expected to measure the thermal property of methane hydrate more accurately.
Received: 09 April 2018      Published: 24 June 2018
PACS:  05.70.-a (Thermodynamics)  
  05.70.Np (Interface and surface thermodynamics)  
  68.60.-p (Physical properties of thin films, nonelectronic)  
  68.65.Ac (Multilayers)  
Fund: Supported by the National Natural Science Foundation of China under Grant No U1262112, and the Fundamental Research Funds for the Central Universities under Grant No 18CX06035A.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/070502       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/070502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jia Li
Zhao-Liang Wang
Gui-Ce Yao
[1]Sloan E D 1998 Clathrate Hydrates of Natural Gases II (New York: Marcel Dekker Inc)
[2]Kerr R A 2004 Science 303 946
[3]Buffett B A 2000 Annu. ReV. Earth Planet. Sci. 28 477
[4]Ross R G, Andersson P and Bäckström G 1981 Nature 290 322
[5]English N J and Tse J S 2010 Energies 3 1934
[6]Waite W F, Stern L A, Kirby S H, Winters W J and Mason D H 2007 Geophys. J. Int. 169 767
[7]Tse J S and White M A 1988 J. Phys. Chem. 92 5006
[8]Tse J S 1994 J. Inclusion Phenom. M0l. Recognit. Chem. 17 259
[9]Gupta A, Kneafsey T J, Moridis G J, Seol Y, Kowalsky M B and Sloan E D 2006 J. Phys. Chem. B 110 16384
[10]Demartin B J 1953 J. Soc. Psychol. 38 99
[11]Krivchikov A I, Gorodilov B Y, Korolyuk O A, Manzhelii V G, Conrad H and Press W 2005 J. Low Temp. Phys. 139 693
[12]Krivchikov A I, Gorodilov B Y, Korolyuk O A, Manzhelii V G, Romantsova O O, Conrad H, Press W, Tse J S and Klug D D 2006 Phys. Rev. B 73 064203
[13]Cook J G and Leaist D G 1983 Geophys. Res. Lett. 10 397
[14]Huang D Z and Fan S S 2004 J. Chem. Eng. Data 49 1479
[15]Huang D Z, Fan S S, Liang D Q and Feng Z P 2005 Chin. J. Geophys. 48 1201
[16]Rosenbaum E J, English N J, Johnson J K, Shaw D W and Warzinski R P 2007 J. Phys. Chem. B 111 13194
[17]Inoue R, Tanaka H and Nakanishi K 1996 J. Chem. Phys. 104 9569
[18]Tse J S, Shpakov V P, Murashov V V and Belosludov V R 1997 J. Chem. Phys. 107 9271
[19]Tse J S, Ratcliffe C I, Powell B M, Sears V P and Handa H P 1997 J. Phys. Chem. 101 4491
[20]Tse J S, Shpakov V P, Belosludov V R, Trouw F and Handa Y P 2001 Europhys. Lett. 54 354
[21]Baumert J, Gutt C, Shpakov V P, Tse J S, Krisch M, Müller M, Requardt H, Klug D D, Janssen S and Press W 2003 Phys. Rev. B 68 174301
[22]Tse J S, Klug D D, Zhao J Y, Sturhahn W, Alp E E, Baumert J, Gutt C, Johnson M R and Press W 2005 Nat. Mater. 4 917
[23]Krivchikov A I, Korolyuk O A and Romantsova O O 2007 Low Temp. Phys. 33 612
[24]English N J 2008 Mol. Phys. 106 1887
[25]Cahill D G 1990 Rev. Sci. Instrum. 61 802
[26]Cahill D G, Katiyar M and Abelson J R 1994 Phys. Rev. B 50 6077
[27]Kumar P, Turner D and Sloan E D 2004 J. Geophys. Res. 109 01207
[28]Turner D J, Kumar P and Sloan E D 2005 Int. J. Thermophys. 26 1681
[29]Jain A and Goodson K E 2008 J. Heat Transfer 130 102402
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 070502
[2] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 070502
[3] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 070502
[4] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 070502
[5] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 070502
[6] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 070502
[7] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 070502
[8] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 070502
[9] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 070502
[10] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 070502
[11] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 070502
[12] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 070502
[13] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 070502
[14] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 070502
[15] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 070502
Viewed
Full text


Abstract