Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 070302    DOI: 10.1088/0256-307X/35/7/070302
GENERAL |
Compressed Sensing Quantum State Tomography Assisted by Adaptive Design
Qi Yin1,2, Guo-Yong Xiang1,2**, Chuan-Feng Li1,2, Guang-Can Guo1,2
1Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
Cite this article:   
Qi Yin, Guo-Yong Xiang, Chuan-Feng Li et al  2018 Chin. Phys. Lett. 35 070302
Download: PDF(508KB)   PDF(mobile)(504KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The recently proposed compressed sensing (CS) method sheds light on quantum state tomography of multi-qubit systems with low rank, which greatly reduces the complexity of measurement and computation. However, the restricted isometry property requirement of CS is difficult to be promised or verified in practice, which makes this method probably assign unreasonable results. In regard to this problem, we adopt a two-step procedure and implement an adaptive strategy to update measurement operators based on the measurement results of the first step for CS, which not only serves as a way to verify the estimate but also improves the accuracy of tomography. Our numerical simulations manifest that our adaptive protocol can reduce about half of the infidelity of non-adaptive protocol and is still efficient even when the rank of the state is slightly high, which would greatly benefit multi-qubit state tomography in future experiments.
Received: 12 February 2018      Published: 24 June 2018
PACS:  03.67.-a (Quantum information)  
  03.65.Wj (State reconstruction, quantum tomography)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61222504, 11574291 and 11774334.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/070302       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi Yin
Guo-Yong Xiang
Chuan-Feng Li
Guang-Can Guo
[1]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2]Smithey D T, Beck M, Raymer M G and Faridani A 1993 Phys. Rev. Lett. 70 1244
[3]James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[4]Paris M and Řeháček J 2004 Quantum State Estimation (Berlin: Springer) vol 649
[5]Qi B, Hou Z B, Li L, Dong D Y, Xiang G Y and Guo G C 2013 Sci. Rep. 3 3496
[6]Häffner H, Hänsel W, Roos C F, Benhelm J and Chekal-kar D 2005 Nature 438 643
[7]Hou Z B, Zhong H S, Tian Y, Dong D Y, Qi B, Li L, Wang Y L, Nori F, Xiang G Y, Li C F and Guo G C 2016 New J. Phys. 18 083036
[8]Bialczak R C, Ansmann M, Hofheinz M, Lucero E and Neeley M 2010 Nat. Phys. 6 409
[9]Cramer M, Plenio M, Flammia S, Somma R, Gross D, Bartlett S, Cardinal O L, Poulin D and Liu Y K 2010 Nat. Commun. 1 149
[10]Zhao Y Y, Hou Z B, Xiang G Y, Han Y J, Li C F and Guo G C 2017 Opt. Express 25 9010
[11]Gross D, Liu Y K, Flammia S T, Becker S and Eisert J 2010 Phys. Rev. Lett. 105 150401
[12]Liu W T, Zhang T, Liu J Y, Chen P X and Yuan J M 2012 Phys. Rev. Lett. 108 170403
[13]Flammia S T, Gross D, Liu Y K and Eisert J 2012 New J. Phys. 14 095022
[14]Shabani A, Kosut R L, Mohseni M, Rabitz H, Broome M A, Almeida M P, Fedrizzi A and White A G 2011 Phys. Rev. Lett. 106 100401
[15]Howl, G A, Schneeloch J, Lum D J and Howell J C 2014 Phys. Rev. Lett. 112 253602
[16]Sugiyama T, Turner P S and Murao M 2012 Phys. Rev. A 85 052107
[17]Huszár F and Houlsby N M T 2012 Phys. Rev. A 85 052120
[18]Mahler D H, Rozema L A, Darabi A, Ferrie C, Blume-Kohout R and Steinberg A M 2013 Phys. Rev. Lett. 111 183601
[19]Hou Z B, Zhu H J, Xiang G Y, Li C F and Guo G C 2016 npj Quantum Inf. 2 16001
[20]Qi B, Hou Z B, Wang Y Y, Dong D Y, Zhong H S, Li L, Xiang G Y, Wiseman H M, Li C F and Guo G C 2017 npj Quantum Inf. 3 19
[21]Donoho D 2006 IEEE Trans. Inf. Theory 52 1289
[22]Candes E J and Wakin M B 2008 IEEE Signal Process. Mag. 25 21
[23]Kalev A, Kosut R L and Deutsch I H 2015 npj Quantum Inf. 1 15018
[24]Steffens A, Riofrio C, McCutcheon W, Roth I, Bell B A, McMillan A, Tame M S, Rarity J G and Eisert J 2016 arXiv:1611.01189
[25]Blume-Kohout R 2010 Phys. Rev. Lett. 105 200504
[26]Blume-Kohout R 2010 New J. Phys. 12 043034
[27]Barkan O, Weill J, Averbuch A and Dekel S 2013 Adaptive Compressed Tomography Sensing (IEEE Conference on Computer Vision and Pattern Recognition)
[28]Malloy M L and Nowak R D 2014 IEEE Trans. Inf. Theory 60 4001
[29]Zheng K, Li K Z and Cong S 2016 Sci. Rep. 6 38497
[30]Yin Q, Li L, Xiang X, Xiang G Y, Li C F and Guo G C 2017 Phys. Rev. A 95 012129
[31]Grant M, Boyd S 2014 CVX: Matlab Software for Disciplined Convex Programming and Version 2. 1
[32]Li K Z, Zhang H, Kuang S, Meng F F and Cong S 2016 Quantum Inf. Process. 15 2343
[33]Riofrío C A, Gross D, Flammia S T, Monz T, Nigg D, Blatt R and Eisert J 2017 Nat. Commun. 8 15305
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 070302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 070302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 070302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 070302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 070302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 070302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 070302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 070302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 070302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 070302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 070302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 070302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 070302
Viewed
Full text


Abstract